Structural Analysis of Mathematical Formulae
with Verification Based on Formula Description
Grammar

Seiichi Toyota!, Seiichi Uchida?, and Masakazu Suzuki?

1 Graduate School of Mathematics, Kyushu University
ma204035@math.kyushu-u.ac. jp
2 Faculty of Information Science and Electrical Engineering, Kyushu University
uchida@is.kyushu-u.ac. jp
3 Faculty of Mathematics, Kyushu University
suzuki@math.kyushu-u.ac. jp

Abstract. In this paper, a reliable and efficient structural analysis method
for mathematical formulae is proposed for practical mathematical OCR.
The proposed method consists of three steps. In the first step, a fast struc-
tural analysis algorithm is performed on each mathematical formula to
obtain a tree representation of the formula. This step generally provides
a correct tree representation but sometimes provides an erroneous repre-
sentation. Therefore, the tree representation is verified by the following
two steps. In the second step, the result of the analysis step, (i.e., a tree
representation) is converted into a one-dimensional representation. The
third step is a verification step where the one-dimensional representa-
tion is parsed by a formula description grammar, which is a context-free
grammar specialized for mathematical formulae. If the one-dimensional
representation is not accepted by the grammar, the result of the analysis
step is detected as an erroneous result and alarmed to OCR users. This
three-step organization achieves reliable and efficient structural analysis
without any two-dimensional grammars.

1 Introduction

In this paper, a reliable and efficient structural analysis method for mathematical
formulae is proposed for realization of practical mathematical OCR [2]. The
purpose of the proposed method is to provide a tree representation for each
mathematical formula together with an estimate of its reliability. In case of low
reliability, that is, when the tree representation result is suspicious, users can
have an alarm from the proposed method.

As shown in Fig.1, the proposed method consists of three steps:

1. representation of the two-dimensional structure of each mathematical for-
mula as a tree,

2. conversion of the tree representation to a one-dimensional representation,
and

i

n .
Function2 Lower Start Character

T
k — E —+ f —> | RelOp Number End Upper Start

k=1 Character End Character
0. Image of
mat}%ematical]C e l 2. One-dimensional representation.
formulae

1.Tree representation

= | Parsing by CFG \
3. Verification with

formula description grammar.

Fig. 1. Flow of the proposed method.

3. verification of the one-dimensional representation with a formula description
grammar.

In the first step, hereafter called the analysis step, a tree representation is con-
structed for each mathematical formula by considering positional relations be-
tween component characters/symbols. This tree construction can be performed
very efficiently using the technique proposed in [4, 8]. Furthermore, this analysis
step is robust to errors in character/symbol recognition results by a preceding
character /symbol recognition engine. For example, the tree representation allows
unmatched parentheses. Thus, the following steps should detect two kinds of er-
rors, namely character/symbol-level error (i.e., misrecognitions) and structure-
level error.

In the second step, hereafter called the conversion step, the tree represen-
tation by the analysis step is converted into an equivalent one-dimensional rep-
resentation. The resulting representation is similar to I2TEX representation of
mathematical formulae.

In the third step, hereafter called the verification step, the one-dimensional
representation is parsed by a formula description grammar, which is a context-
free grammar (CFG) specialized for mathematical formulae. The prepared gram-
mar is based on a content base interpretation of mathematical formulae (see
Section 4). Therefore, the third step corresponds to the final spell check process
after recognition in usual OCR. If the one-dimensional representation is not ac-
cepted by the grammar, the result of the analysis step is detected as an erroneous
result and alarmed to OCR users. Consequently, this step verifies the tree repre-
sentation provided by the analysis step. Note that the verification step has the

potential to detect both of the structure-level errors and the character/symbol-
level errors.

Several researchers have considered structural analysis of mathematical for-
mulae. However, most of these methods assume that all the characters/symbols
are correctly recognized. Anderson’s technique [1] parses using a precedence ma-
trix. Chou [3] devises a two-dimensional stochastic context-free tree grammar,
and parses with a generalization of the Cocke—Younger—Kasami algorithm. Ap-
plied to two-dimensional grammars, the CYK algorithm is slow on a single pro-
cessor, though it can be parallelized. Zanibbi [11] has proposed a faster method
using two-dimensional grammars, based on tree transformation. Fateman [5] has
achieved acceptable speed on a mathematical grammar with left-to-right recur-
sive descent. Okamoto’s approach [7] is fast and works solely on the basis of
layout, without any grammar whatsoever. A survey of some other methods can
be found in [2,6,10].

Our technique represents mathematical structure as a tree, using the output
of the Eto-Suzuki algorithm [4, 8] applied to individual character recognition
results from OCR. This algorithm takes OCR recognition candidates on a page,
and arranges them into a tree, optimizing a cost associated to each arrangement.
The algorithm can produce several candidate results. The results might include
misrecognized characters, or a strange formula structure.

Structural analysis procedures based purely on grammar will fail and provide
no structural analysis result when character/symbol-level errors are included.
Thus, in the case of failure, OCR users would need to build an entire structural
analysis result manually. In contrast, the proposed method always can provide
some structural analysis result as a tree because it analyzes characters/symbols
using only layout information of them. It returns many candidates and their costs
after layout analysis. Therefore, if the first candidate is mistaken, it searches for
a correct result from other candidates. It rejects candidates that do not conform
to a verification grammar that we introduce. This grammar of the verification is
based on content rules similar to content mark-up in MathML. By inferring the
roles of the symbols, we expect to raise the accuracy of structural analysis.

The remaining part of this paper is organized as follows. Section 2 describes
the analysis step for a tree-based structural analysis. Section 3 describes the
conversion step for converting the tree representation by the analysis step to a
one-dimensional representation. Section 4 describes the verification step using
the formula description grammar. Experimental results are provided in Section 5
and in Section 6 a conclusion is drawn.

2 Analysis step

The analysis step is based on the efficient structural analysis method proposed
in [4,8]. The analysis step provides a tree representation for each mathematical
formula. Each component character/symbol of a formula is a leaf of the tree. If
two component characters/symbols are “adjacent” (e.g., horizontally adjacent
like “2” and “x” of “22”, or diagonally adjacent like “2” and “2” of “x2”, or

vertically adjacent like “>°” and “a” of “>7), their corresponding leaves are
x

connected by a link. The tree is built as an minimum path algorithm where
adjacency, positional relation, and size relation are used as costs. It should be
noted that this tree can be built with few computations. Fig. 2 shows several
tree representations of formulae provided by the analysis step successfully.

Although the analysis step generally provides correct tree representations,
it sometimes fails. This is because the analysis step does not care about the
classes of adjacent characters/symbols. For example, the analysis step may al-
low a strange tree where two “+”s are linked together. In addition, the classes
themselves may be erroneous due to the failures by a preceding character /symbol
recognition procedure.

Typical failure examples are shown in Fig.3. The upper example includes
a character/symbol-level error, i.e., a misrecognition of character/symbol. The
lower example includes a structure-level error, i.e., error in the structure of the
tree, and the position of the right parenthesis is erroneous.

. e
lim &' (¢) = oo limﬂfj’ﬂ (—c—)-=—u

(a) Original image ¢ == —~®

(b) Tree representation

Fig. 2. A formula whose structure is perfectly analyzed by the analysis step.

loll? < lloo, lonll2 < llpodl}

]. Pu(rei(p) 1 U(Tew)

— < -)<
l_rn Ja 1—r,) —

(a) Original image.

a

(b) Analysis result.

Fig. 3. Failures at the analysis step. The upper example includes misrecognition of
“I” as “}”. The lower example includes a structure-level error where the rightmost
parenthesis “)” is treated as a superscript of “e”.

3 Conversion step

The conversion step of the proposed method connects the preceding analysis
step and the succeeding verification step. The result of the analysis step is a
tree, i.e., a kind of two-dimensional structure, while the verification step will
accept one-dimensional sequences because it is based on a one-dimensional (i.e.,
usual) CFG. Thus, the role of the conversion step is the transformation of the
tree representation into an equivalent one-dimensional representation.

In the conversion, the structure and the component characters/symbols of
each mathematical formula are represented by the terminals of Table 1. Several
terms, such as Number, Character, BinOp, etc., represent the category of com-
ponent character/symbol. Other terms, such as LSup (left superscript), RSub
(right subscript), etc., represent the structure of the tree. Roman and Greek let-
ters are classified into the same category(Character). Start and End, are used to
specify the range of a super/subscript. The conversion step also prepares the cat-
egory of each parentheses and punctuation. The choice of category is restricted
by existing subarea links.

The conversion rule transforms the tree representation into a one-dimensional
representation like the IATEX description of mathematical formula. The details
of the conversion are omitted here. Fig.4 shows examples of the conversion.

3 3
Xr—=—yYy—X-—=Y

— ‘ Character RSup Start Number End BinOp3 Character ‘

}Ciilgf(x):*{imﬂfa(ﬁxa)

X ——0

— | Function1 Lower Character Arrow Number End
Character LeftParenthesis Character RightParenthesis

Fig. 4. Example of a one-dimensional representation of a formula. The tree represen-
tation of each formula is also presented.

4 Verification step

The role of the verification step is the detection of structure-level errors and
character/symbol-level errors in the result of the analysis step. The verification

Table 1. Terminals for representing formulas. A character/symbol terminal corre-
sponds to a component character/symbol of a mathematical formula. A relation ter-
minal is used to represent the positional relation among character/symbol terminals.

(a) Character/symbol terminals
lTerminal HA typical character/ symbol‘Succeedable relation terminals‘

Number 0,1 LSup, LSub, RSup, RSub
Character Ty, a, LSup, LSub, RSup, RSub
RelOp <, =,>

BinOpl =+, X

BinOp2 *, /

BinOp3 +,—

LeftParenthesis || (

LeftBrace {

LeftBracket [

RightParenthesis ||) RSup, RSub
RightBrace } RSup, RSub
RightBracket] RSup, RSub
LeftFloor |

LeftCeil [

LeftAngle (

RightFloor | RSup, RSub
RightCeil 1 RSup, RSub
RightAngle) RSup, RSub
OtherParenthesis|| |, ||

Point "

Functionl lim Lower
Function2 S, II Lower, Upper
Function3 sin, cos RSup
Function4 J RSup,RSub
Arrow —, = Upper, Lower

(b) Relation terminals.

lTerminalHMeaning ‘

Start Start for range of script
End End for range of script
RSub Right subcript

RSup Right superscript

LSub Left subscript

LSup Left superscript

Lower Lower script

Upper Upper script

relies on parsing based on a formula description grammar, which is a context-
free grammar specialized for mathematical formulae. Thus, we can implement
this verification procedure with any conventional parsing technique for CFG. In
the following experiment, we used the well-known chart method for parsing. The
terminals used in our CFG are listed in the Table 1.

Assume that a mathematical formula “(a)” is wrongly analyzed as “(a]”.
Consider the following grammar:

(Start) ::= (Expr)

(Expr) ::= Character

(Expr) ::= LeftParenthesis (Expr) RightParenthesis
(Expr) ::= LeftBracket (Expr) RightBracket

where () indicates a non-terminal. This grammar will accept the following
sequence representing the formula “(a)”:

LeftParenthesis Character RightParenthesis

On the other hand, the above analysis result “(a]” is represented as the following
sequence:

LeftParenthesis Character RightBracket

and thus will not be accepted by the grammar. Consequently, a user will have
an alarm of an erroneous analysis result according to this verification result.

In practice, we prepare more grammar rules for the verification of various
kinds of mathematical formulae; the above tiny example, however, shows the
basic approach of the verification step. Note that Anderson’s grammar [1] will
be helpful to understand the entire rule set.

5 Experimental Results

The verification performance of the proposed method was evaluated by using
mathematical formula images extracted from the ground-truthed mathematical
document database called INFTY CDB-1 [9]. The ground-truth data for each
mathematical formula in INFTY CDB-1 is composed of (i) the correct class
of each component character/symbol and (ii) the correct tree structure of the
formula.

The experiment focused on the ability of the verification step (i.e., the third
step) on detecting the failures at the analysis step (i.e., the first step). The fail-
ures at the analysis step are classified into the following two types: misrecognition
of component character/symbols (e.g., “/”(slash)— “I”), and wrong analysis of
positional relations (e.g., “z?A” — “x2A”). The verification step has the poten-
tial to detect both failures.

Figures 5-9 show several results of the proposed method. In each of those
figures, formula images (left) and their analysis results by the first step (right) are

shown. The analysis results are represented as formulae synthesized by applying
the analysis results to the I¥TEX complier.

1—3e™" - e
2

ro€' roe’

limc_,oo lim

Re Cn Re C?l

(a) Original image. (b) Analysis result.
Fig. 5. Formulae whose character /symbol-level errors were successfully detected by the
verification step.

Figure 5 shows the results that the verification step could detect the failure
of the character/symbol misrecognition at the analysis step. Several characters
were misrecognized in the analysis results. For example, in the top example,
a mathematical symbol “/”(slash) was misrecognized as “I”. In the third ex-

[P

ample, a character “c” and a symbol “—” touch one another. Thus, they were
misrecognized as a single symbol “—” as shown in the analysis result.

Those results with misrecognitions were successfully detected by the verifica-
tion step. For example, our CFG does not accept the expression “wl2” because
the CFG requires that digits (“2”) should precede letters (“1”) if they form a sin-
gle and horizontally aligned term. The CFG also does not accept the expression
“lim, —” because the CFG requires that the first character/symbol of a right
subscript should not be an binary operator (e.g., “—7).

Figure 6 shows how that the verification step could detect the failure of the
wrong analysis of positional relations at the analysis step. In the first example of
this figure, a correspondence of a left parenthesis in the right superscript of the
mathematical symbol(“[”) is wrong. In the second example, the point which a
mathematical symbol “/”(slash) has a right superscript of “2” is nonsense as a
mathematical formula. In the same fashion, the above failure of the positional
misrecognition can be detected by this verification.

1 u(rel?®)

]._Tn a

|n] <2e™*

SIU see Usb

(a) Original image.

1 u(rew)
— | <
1—r,) — /a
In| < 2e™°

81U...Usp

(b) Analysis result.

Fig. 6. Formulae whose structure-level errors were successfully detected by the verifi-

cation step.

loll* < loa,|

:uSo (a"

(a) Original image.

oIl < loc - |l

Ks, (CL/

(b) Analysis result.

Fig. 7. Formulae whose both character/symbol-level errors and structure-level errors

were successfully detected by the verification step.

Figure 7 shows the case that the results of the analysis step include not only
misrecognition but also wrong positional analysis. Like the previous examples,
this complex failure is also detected by the verification step.

Dq[u]? Dolu)?

lella=Sfa02dady lo)2a= / /A P dedy

(a) Original image.
(b) Analysis result.

Fig. 8. Formulae whose errors could not be detected by the verification step.

Figure 8 show formulae whose structure-level errors could not be detected
by the proposed method. In the first example, the right superscript letter (“%”)
of the right square bracket(“]”) was misrecognized as “g”, but this verification is
not detected because both of “%” and “g” are correct as mathematical formulae.
In the second example, the position of “A” is wrong. A mathematical symbol
(“”) has a possibility of a right subscript like this. Therefore, in this case, there
is nothing to detect the failure. The proposed method, however, could not detect
this failure because the CFG is insufficient to detect that the character/symbol
was misrecognized as a meaningful formula. We can reduce these undetected
failures by adding new grammar rules to our CFG.

%* *

I z

O)=| |*dul @(c):/ | * dul
1¢c) l(c)
(a) Original image. (b) Analysis result.

Fig. 9. False alarm by the verification step, that is, formulae wrongly detected as
€rroneous ones.

Figure 9 shows the false alarms by the proposed method. The analysis step
could analyze the structure of those formulae successfully. The verification step,
however, judged that they are wrong. This is because “*”, which is usually a bi-
nary operator, appears without a left operand. We will reduce these false alarms

by revising our CFG; however, false alarms are less serious than undetected
failures. Our method is a verification method and therefore the analysis results
detected by the proposed method will be checked by users just as “suspicious”
results.

6 Conclusion

We have proposed a reliable and efficient structural analysis method for math-
ematical formulae, where a verification procedure based on formula descrip-
tion grammar is utilized. First, we assume that the structure of each mathe-
matical formula is analyzed and represented as a tree. Although this analysis
can be done efficiently, its result often includes structure-level errors and/or
character/symbol-level errors. Thus, the formula description grammar, which is
a context-free grammar specialized for mathematical formulae, is used to parse
and verify the tree representation. This verification also can be done efficiently,
because the tree representation is converted into a one-dimensional represen-
tation before parsing. If the one-dimensional representation is not accepted by
the grammar, the failing portion will be included in the tree representation but
alarmed to users. Experimental results showed that the proposed method can
detect some erroneous tree representations successfully.

In the future, we plan to quantitatively evaluate our verification procedure,
using data from InftyCDB-1 and Infty-Reader [12] which implemented Eto and
Suzuki’s algorithm. The verification procedure should accept correctly-analyzed
formulas and reject incorrectly-analyzed formulas at a high rate. Also, we plan
to study how additional semantic information can be used to select structural
recognition results from the candidates allowed by our verification grammar.

Acknowledgement

This research is supported by the Kyushu University 21st Century COE Pro-
gram: “Development of Dynamic Mathematics with High Functionality”.

References

1. R.H. Anderson, “Syntax-directed recognition of hand-printed two-dimensional
mathematics,” Interactive Systems for Experimental Applied Mathematics, M.
Klerer and J. Reinfelds, Eds. Academic Press, pp. 436-459, 1968.

2. K. -F. Chan, D. -Y. Yeung, “Mathematical expression recognition: a survey,” Int.
J. Doc. Anal. Recognit. vol. 3, no. 1, pp. 3-15, 2000.

3. P. A. Chou, “Recognition of equations using a two-dimensional stochastic context-
free grammar,” Proc. SPIE, vol. 1199, pt. 2, pp. 852-863, 1989.

4. Y. Eto and M. Suzuki, “Mathematical Formula Recognition Using Virtual Link
Network,” Proc. ICDAR, pp. 430-437, 2001.

9.

R.J. Fateman, T. Tokuyasu, B.P. Berman, N. Mitchell, “Optical character recogni-
tion and parsing of typeset mathematics,” Journal of Visual Communication and
Image Representation vol 7 no. 1, pp. 2-15, 1996.

U. Garain and B. B. Chaudhuri, “A syntactic approach for processing mathematical
expressions in printed documents,” Proc. ICPR, vol. 4 of 4, pp.523-526, 2000.

M. Okamoto, B. Miao, “Recognition of mathematical expressions by using the layout
structure of symbols,” Proceedings of First International Conference on Document
Analysis and Recognition Saint Malo, pp. 242-250, 1991.

M. Suzuki, F. Tamari, R. Fukuda, S. Uchida, and T. Kanahori, “INFTY — An
integrated OCR system for mathematical documents,” Proc. ACM Symposium on
Document Engineering, pp.95-104, 2003.

M. Suzuki, S. Uchida, and A. Nomura, “A ground-truthed mathematical character
and symbol image database,” Proc. ICDAR, vol. 2 of 2, pp. 675-679, 2005.

10. J. -Y. Toumit, and S. Garcia-Salicetti, H. Emptoz, “A hierarchical and recursive

model of mathematical expressions for automatic reading of mathematical docu-
ments,” Proc. ICDAR, pp. 119-122, 1999.

11. R. Zanibbi, D. Blostein, J.R. Cordy, “Recognizing mathematical expressions using

tree transformation,” TEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 11,
pp.1455-1467, 2002

12. Infty-Reader, http://www.inftyproject.org/en/download.html.

