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Abstract Mathematical formulas challenge an OCR system with a range of similar-looking characters whose bold,

calligraphic, and italic varieties must be recognized distinctly, though the fonts to be used in an article are not known

in advance. We describe the use of support vector machines (SVM) to learn and predict about 300 classes of styled

characters and symbols.
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1. Introduction

Optical character recognition problems were considered

very early in the development of support vector machines,

with promising results [1]. However, the problem of OCR for

mathematical documents is substantially more difficult than

standard OCR problems for three principal reasons:

（ 1） Although a variety of fonts is used in mathematical

literature, when reading any single paper, it is important to

keep appearances of italic, bold, roman, calligraphic, type-

writer, and blackboard bold letters distinguished.

（ 2） A rich set of symbols is used, and distinctions be-

tween letters may be more subtle than within the character

set of a typical human language.

（ 3） The symbols are not arranged in a simple one–

dimensional pattern. Subscripts, superscripts, fractional re-

lationships, and accents occur, and may be nested [2].

The Infty Project [7] in the Suzuki Laboratory at Kyushu

University is developing Infty Reader software [5] to perform

OCR of scanned mathematical journal articles, and produce

output in languages that allow symbol relationships to be

properly encoded, including TEXand MathML. Although In-

fty Reader nominally achieved 99 percent accuracy of single–

letter recognition before this investigation (October 2005),

its failure to distinguish certain common symbols would be

bothersome to any serious user.

The Infty Project defined entities for about 600 charac-

ters and symbols used in mathematical research, and cre-

ated a ground truth database identifying their appearances

in page–by–page scans of hundreds of journal articles. Many

character pairs could be distinguished in different styles by

simple clustering techniques applied to directional features

measured in a mesh grid. Runtime accuracy exceeded 99% ,

but hundreds of letter pairs remained consistently problem-
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atic. We aim to improve the accuracy of single–character

recognition through the use of support vector machines.

2. Test Data

The Infty character set comprises 1,571 Roman and Greek

letters, numbers, and mathematical symbols, divided into 46

categories according to purpose and style. Further details of

these characters appear in [8].

The Infty Project has selected journal articles represent-

ing diverse fields of higher mathematics, taken from a thirty

year period. These articles were scanned page by page at 600

dpi to produce bitmap image files. The Infty OCR engine

extracted the symbols from each page and recognized each

symbol as a character from the Infty character set. College

and graduate mathematics students manually inspected and

corrected the results.

The results of this process appear in a “ground truth”

database. Namely, for each character on a scanned page,

a bitmap framed by the bounding box of that character is

taken from the page. This bitmap is tagged with the cor-

rect identification of the symbol. （注1） “Link information”

describing the character’s relationship to others on the page

(subscripts, superscripts, limits, portions of a fraction, etc.)

is also available in the database, but it is not utilized in the

present study.

In fact, the Infty project has produced two databases of

this kind. One, called InftyCDB-1, is freely available for re-

search purposes upon request, and is summarized in [8]. The

other is used internally by the Infty Reader OCR engine.

We use the latter database in this experiment, because it

has more data, and because it makes it easier to compare

our results with those of the actual Infty Reader. Our data

sample consists of 284,739 character symbols extracted from

363 journal articles. There are 608 different characters rep-

resented.

At random, we divide the 363 articles into three parts con-

sisting of 121 articles each. The data from the corresponding

articles is marked as “training”, “selection”, or “testing” ac-

cordingly. To make sure we had enough data to train and

evaluate our classifiers, we examined only the characters with

at least ten samples in training, selection, and testing por-

tions of the database. This left 297 characters, pictured in

Figure 1.

（注1）：Some bitmaps would not be identifiable solely on the basis of

this bitmap. For example, a hyphen could not be distinguished from

an underscore, without knowing its relationship to the baseline on

the page when it was scanned. The original position on the page is

part of the database, but this information was discarded prior to our

experiment.

Big Symbol

Calligraphic

Greek Upright

Arrow

Greek Italic

Binary Operators

Other Symbols

German Upright

Blackboard Bold

Latin Upright

Latin Italic

Relational Operators

Accents

Punctuation

Symbol Fragments

Ligature Italic

Brackets

Ligature Upgright

Figure 1 Symbols with 10 training, selection, and testing samples

3. Directional Features

Given an instance of a symbol, let w be its width and h

be its height. Our feature vectors consist of the aspect ra-

tio ( h
w

), followed by 160 floating–point coordinates of mesh

directional feature data.

This mesh data is divided into “tall”, “square”, and

“short” blocks of 48, 64, and 48 coordinates respectively.

When the aspect ratio of a character exceeds 1.3, the tall

block contains directional feature data computed from a 3×4

mesh; otherwise it contains zero–valued entries. When the

aspect ratio of a character is between 1
1.7

and 1.7, the square

block contains directional feature data from a 4 × 4 mesh;

otherwise it contains zero–valued entries. When the aspect

ratio of a character is less than 1
1.3

, the short block contains

directional features computed from a 4 × 3 mesh; otherwise

it contains zero–valued entries. Thus, for any symbol, one
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or two (but never three) of the blocks are assigned nonzero

entries.

We describe roughly the algorithm for associating direc-

tional feature data to an m × n mesh block. Divide the

original bitmap horizontally into m equally sized lengths,

and vertically into n equally sized lengths. Assign a “chunk”

of four coordinates of the block to each of the m × n grid

positions; initially, their values are zero. These four coor-

dinates represent the horizontal and vertical directions, and

two diagonals.

The contribution of part of the outline’s direction to the

mesh features is determined from its position in the bitmap,

using a partition of unity. Given a positive integer r, con-

sider the r–fold partition of unity given by the functions

pri : [0, 1]→ [0, 1] defined by

pri (x) =





0 x < i
r
− 1

2r

r(x− (i/r − 1/2r)) i
r
− 1

2r
<= x < i

r
+ 1

2r

−r(x− (i/r + 3/2r)) i
r

+ 1
2r
<= x < i

r
+ 3

2r

0 x > i
r

+ 3
2r

(1)

for 1 <= i < r − 1,

pr0(x) =





1 x < 1
2r

−r(x− 3/2r) 1
2r
<= x < 3

2r

0 x > 3
2r

(2)

and

prr−1(x) =





0 x < 1− 3
2r

r(x− (1− 3
2r

)) 1− 3
2r
<= x < 1− 1

2r

1 1− 1
2r
<= x

.

(3)

Discard every isolated black pixel from the original bitmap.

In the remaining bitmap, trace every outline between white

and black pixels, following its chain code description. When

visiting the pixel in location (x, y) during this trace, identify

the direction (horizontal, vertical, diagonal one, or diagonal

two) where the next pixel in the outline will be. For every i,

0 <= i < m, and every j, 0 <= j < n, add pmi ( x
w

) · pnj ( y
h

) to the

coordinate of the (i, j) chunk representing that direction.

After completing the trace of each outline component, di-

vide all the values by the perimeter of the bounding box.

This result gives the values to be entered in the correspond-

ing block of the feature vector.

4. Naive classifier

Typically, a support vector machine learns a binary clas-

sification. There are various techniques for putting SVM’s

together to distinguish multiple classes; a comparison of some

popular methods (1–vs–1, 1–vs–all, and the Directed Acyclic

Graph) may be found in [4]. Except for the 1–vs–all method,

these methods require the construction of O(n2) classifiers

to solve an n–class classification problem. Because the Infty

character set includes more than 1,500 entities, this seemed

unnecessarily burdensome. Therefore, we try to extract an

easier part of the classification problem that can be solved

without SVM.

Taking the data assigned to the “training” portion of the

database, we compute the mean feature vectors for the in-

stances of each symbol. We create a naive classifier that

assigns an input to the class whose mean feature vector is

nearest, by Euclidean distance.

We run this naive classifier on the “selection” portion of

the database, to produce a confusion matrix. The (i, j) en-

try of this matrix counts the number of samples in which

a character truly belonging to class i was assigned to class

j by this rule. The 297 by 297 confusion matrix we pro-

duced had 947 nonzero off-diagonal entries, an average of 3.2

misrecognitions per character.

We consider some of the misrecognitions to be too difficult

for any classifier to resolve on the basis of our mesh of di-

rectional features. Particularly, we do not expect bold and

non–bold variants of the same character to be distinguish-

able. Also, we do not expect upper and lower case variants of

the letters C, O, P, S, V, W, X, and Z to be distinguishable in

the same style, or in styles that are identical except for bold-

ness. Disregarding misrecognitions of these two kinds, 896

other nonzero off–diagonal entries remain in the confusion

matrix.

For 62 of the 297 characters with ten training, selection,

and testing samples, the naive classifier recognized less than

half of the selection samples correctly. These characters are

displayed in Figure 2. In comparison, ninety percent ac-

Figure 2 Characters the naive classifier usually fails to recognize

curacy is achieved for 197 of the 297 symbols, 95 percent

accuracy for 163 symbols, and 99 percent accuracy for 123

symbols.

Although the confusion matrix is relatively sparse, certain

troublesome characters have many misrecognition results, as

can be seen in Figure 3. For 95 of the 297 characters, at

least four distinct characters occur as misrecognition results.
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Figure 3 Histogram of distinct misrecognitions of an input char-

acter by the naive classifier

Eleven letters (plain ’1’, ’4’, ’E’, ’I’, ’l’, ’r’, ’s’, ’t’, ’ “ ’, and

italic ’γ’ and ’ψ’) had ten or more distinct characters appear

as misrecognition results.

At runtime, the naive classifier will be used to assign each

letter to a cluster of possible candidates, consisting of the

recognition result and the other candidates most likely to

have produced that recognition result (as determined by our

confusion matrix). The harder problem of distinguishing be-

tween the letters in each of these clusters will be assigned to

support vector machines.

5. Linear SVM

Within each cluster, we will use the 1–to–1 approach to

multiclass classification. This requires first creating a binary

SVM for each pair of classes in the cluster.

Because they are simple and can be computed quickly, we

begin our experiment with SVM’s that use the linear kernel:

K(~x, ~y) = ~x · ~y. (4)

The naive classifier, when restricted to two classes, can be

thought of as the linear classifier determined by the hyper-

plane equidistant from the two cluster centers. The support

vector method enables us to search for hyperplanes in the

original feature space that perform better on the training

data.

There are no kernel parameter choices needed to create a

linear SVM, but it is necessary to choose a value for the soft

margin (C) in advance. Then, given training data with fea-

ture vectors ~xi assigned to class yi ∈ {−1, 1} for i = 1, . . . , l,

the support vector machines solve

min
~w,b,~ξ

1
2
K(~w, ~w) + C

∑l

i=1
ξi (5)

subject to yi(K(~w, ~xi) + b) >= 1− ξi
ξi >= 0

where ~ξ is an l–dimensional vector, and ~w is a vector in the

same feature space as the ~xi (see, e.g., [3]). The values ~w and

b determine a hyperplane in the original feature space, giving

a linear classifier. A priori, one does not know which value

of soft margin will yield the classifier with the best general-

ization ability. We optimize this choice for best performance

on the selection portion of our data, as follows.

Our basic parameter search method, here and in the fol-

lowing sections, is a grid search method that generalizes to

any number of dimensions. For each candidate parameter

assignment, we train an SVM with those parameters on the

training portion of our data. Then we measure its perfor-

mance on the instances of two classes that appear in the

selection data. The score of the parameter is the minimum

of the accuracy on the first class’s input and the accuracy

on the second class’s input. Hereafter, “accuracy” by itself,

in the context of a binary classification problem, will refer to

this score.

Often, grid searches require a search interval to be speci-

fied for each dimension. Our approach requires only an ini-

tial parameter choice, and then grows the search region out-

ward, until performance stops improving. More formally, let

x1, . . . , xn be the variable parameters, and xinit1 , . . . , xinitn be

their initial values. Let L be the discrete set of points of the

form (2j1xinit1 , . . . , 2jnxinitn ) for some (j1, . . . , jn) ∈ Zn.

（ 1） For each i, set xmini and xmaxi to xiniti .

（ 2） Set the iteration count t to zero.

（ 3） Let B be the box
[
xmin1 , xmax1

]
×· · ·×

[
xminn , xmaxn

]
,

and ∂C be its boundary. Record the best value on each sur-

face of the box.

（ 4） For each untested parameter value in the finite set

L ∩ ∂C, train a new SVM on those parameters, and assign

it a score based on selection data performance, as explained

above.

（ 5） If the performance is superior to 99.5% accuracy,

skip to the last step.

（ 6） From these results, for every i, set bt,+i and bt,−i to

the highest scores achieved on the hyperplanes xi = xmaxi

and xi = xmini , respectively.

（ 7） If t > 0, double xmaxi for every i such that bt,+i >=

bt−1,+
i , and halve xmini for every i such that bt,−i >= bt−1,−

i .

If t = 0, double xmaxi and halve xmini for all i, regardless.

（ 8） Increment the iteration count t.

（ 9） If t < 3 or the best performance has increased in the

last iterations, return to step 3.

（ 10） Report the best performance, and the most recently

tested parameter selection that reached that performance.

Initial choices may matter under this grid search algo-

rithm, if the algorithm terminates before reaching a selection

of parameters that produces globally optimal results. This

possibility seems unlikely as long as the resulting SVM per-

forms better than random guessing in each case. The linear

SVM problem has only the soft margin C = x1 as a param-
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eter, and we set it initially to be xinit1 = 1024.

Table 1 displays the accuracy achieved by the linear SVM

selected, on the testing data for pairs of symbols that the

naive classifier sometimes confused.

Accuracy > Number of pairs

Total 795

0 783

.5 774

.6 770

.7 767

.8 759

.9 750

.95 742

.97 720

.99 684

.995 650

.999 609

Table 1 Linear SVM performance

We compared the chosen linear SVM classifier’s perfor-

mance on the letters where the naive classifier did not reach

100% accuracy, to the performance of the naive classifier.

The 896 misrecognitions of the naive classifier comprise 795

unordered pairs of symbols. For nine of these pairs, both

the naive classifier and the linear SVM always misassigned

one of the two characters. Figure 4 compares the perfor-

mance of the two methods on the remaining 786 pairs. Of

the 786 pairs, 34 did not perform as well under the linear

SVM as with the naive classifier. The exact same perfor-

mance was achieved on 95 pairs, and improvement occurred

on 657 pairs. The histogram does not report the 24 symbols

with more than a three–fold improvement in accuracy. Thir-

teen of these symbols received zero accuracy from the naive

classifier, for an infinite improvement in performance.
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Figure 4 Histogram of improvement of linear SVM compared to

naive classifier

Figure 5 illustrates the cases where the linear SVM

achieved double the accuracy of the naive classifier.

Figure 5 Pairs with two–fold improvement over naive classifier

using linear SVM

6. Gaussian SVM

Just by using linear kernel support vector machines, our

symbol recognition rates dramatically improved, but the use

of a linear kernel severely limits the potential benefit of a

support vector machine. The use of a Gaussian (radial) ker-

nel

K(~x, ~y) = e−γ‖~x−~y‖
2

(6)

in the SVM problem (5) effectively transforms the input fea-

ture space into an infinite–dimensional one, where the search

for an optimal separating hyperplane is carried out. Classi-

fiers of this form may perform better on classes whose feature

data is not linearly separable in the original feature space.

However, the addition of the parameter γ in the kernel defi-

nition makes the parameter search two–dimensional, adding

computational expense to the selection of a classifier.

According to a result of Keerthi and Lin [6], given a soft

margin C, the sequence of Gaussian SVM classifiers with

kernel parameter γ and soft margin C
2γ

converges pointwise,

as γ → 0, to the linear SVM classifier with soft margin C.

Thus, if our parameter search is wide enough, we should

achieve higher accuracy with the Gaussian kernel than with

the linear one.

We constructed Gaussian–kernel SVM classifiers for the

75 pairs of letters that the linear kernel failed to distinguish

with 97% accuracy. A comparison of the performance of the

chosen classifiers for each kernel type is given in Figure 6.

In Figure 7, we display the eight pairs on which the Gaus-

sian SVM performed with at least 10% higher accuracy than

the linear SVM. The 31 pairs where Gaussian SVM accuracy

falls below 80% are shown in Figure 8.
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Figure 6 Comparison of linear and Gaussian SVM performance

Figure 7 Pairs with 10% improvement from linear to Gaussian

kernel

Figure 8 Pairs with under 80% accuracy by Gaussian SVM

7. Conclusion

Even with the simplest kernel, the support vector method

is strong enough to achieve good generalization accuracy on

an optical character recognition problem that causes diffi-

culty for simpler classification methods. We believe that our

SVM results may be the best classification possible on the

basis of the mesh of directional features we are using.

To distinguish the characters that confuse our SVM classi-

fier, we plan to add new features. For example, by counting

the number of connected components in a symbol, we could

distinguish many variants of the greater–than sign (>). We

also plan to record the convexity or concavity of a symbol as

traced along its outline, to distinguish various nearly verti-

cal characters. These features will be the topic for a future

paper.

To our surprise, the SVM’s we constructed with the Gaus-

sian kernel did not show significantly stronger performance

on the testing data. We attribute this phenomenon to the

simple nature of our mesh of directional features. We plan

to repeat this comparison after attaching a greater variety of

features to our data.
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