
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

Mathematical symbol recognition with support vector machines

Christopher Malon a,*,1, Seiichi Uchida b, Masakazu Suzuki a

a Faculty of Mathematics, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812–8581, Japan
b Faculty of Information Science and Electrical Engineering, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan

Received 23 October 2006; received in revised form 25 January 2008
Available online 10 March 2008

Communicated by T. Tan.

Abstract

Single-character recognition of mathematical symbols poses challenges from its two-dimensional pattern, the variety of similar sym-
bols that must be recognized distinctly, the imbalance and paucity of training data available, and the impossibility of final verification
through spell check. We investigate the use of support vector machines to improve the classification of InftyReader, a free system for
the OCR of mathematical documents. First, we compare the performance of SVM kernels and feature definitions on pairs of letters that
InftyReader usually confuses. Second, we describe a successful approach to multi-class classification with SVM, utilizing the ranking of
alternatives within InftyReader’s confusion clusters. The inclusion of our technique in InftyReader reduces its misrecognition rate by 41%.
� 2008 Elsevier B.V. All rights reserved.

Keywords: Support vector machine; OCR; Mathematical document; Mathematical symbol recognition

1. Introduction

Mathematics is the universal language of the scientific
literature, but a computer may find it easier to read the
human language in which surrounding text is written.
The failure of conventional OCR systems to treat mathe-
matics has several consequences:

� Readers of mathematical documents cannot automati-
cally search for earlier occurences of a variable or oper-
ator, in tracing the notation and definitions used by a
journal article.
� The appearance of mathematics on the same line as text

often confounds OCR treatment of surrounding words.
� Equations can only be represented as graphics by

semantic transformation systems, such as those convert-
ing digital documents into braille for accessibility by
blind readers (Suzuki et al., 2004).

Mathematical OCR was investigated as early as 1968
(Anderson, 1968); a survey of its difficulties and previous
approaches may be found in (Chan and Yeung, 2000). A
modern system competing with ours has achieved a
93.77% single-character recognition rate (Garain et al.,
2004). OCR of mathematics differs markedly from typical
text recognition because its single-character recognition
phase must be followed by a structural analysis phase, in
which symbol relationships involving superscripts, sub-
scripts, fractions, and matrices must be recovered. The
two-dimensional arrangement affects not only structural
analysis but single-character recognition itself, because typ-
ical assumptions about bounding boxes and baselines are
violated. Even in relatively simple equations such as

/jCðzÞ ¼ expðzN/Þ

the subscript-positioned capital blackboard bold C, whose
base is nearly aligned with that of the vertical bar, might be
mistaken for a lower-case letter.

In this paper, we focus on the single-character recogni-
tion phase that precedes structural analysis. We have
addressed structural analysis in (Eto et al., 2001; Muraka-
mi et al., 2002; Kanahori et al., 2003; Suzuki et al., 2003).

0167-8655/$ - see front matter � 2008 Elsevier B.V. All rights reserved.

doi:10.1016/j.patrec.2008.02.005

* Corresponding author. Tel.: +1 609 951 2594; fax: +1 609 951 2482.
E-mail addresses: malon@nec-labs.com (C. Malon), uchida@is.

kyushu-u.ac.jp (S. Uchida), suzuki@math.kyushu-u.ac.jp (M. Suzuki).
1 Present address: NEC Laboratories America, 4 Independence Way,

Princeton, NJ 08540, USA.

www.elsevier.com/locate/patrec

Available online at www.sciencedirect.com

Pattern Recognition Letters 29 (2008) 1326–1332

Author's personal copy

The single-character OCR of mathematics poses challenges
that, if not unique, place it alongside the most difficult
human languages to recognize. The recognition problem
consists of about 1000 classes, many with little existing
ground truth data. Certain distinct letters, such as Latin
v and Greek m, are in close resemblance. Most unusually,
we desire the distinction of styles.

In typical mathematical usage, different styles of the
same letters will have completely different meanings. The
problem is most severe not in engineering, but in pure
mathematics. For example, within a single article in p-adic
representation theory, the bold letter G often will represent
a group over an algebraically closed field, the plain italic G

will represent its rational points over a p-adic field k, and
sans-serif G a reductive quotient over the residual field �k,
with German g used for a Lie algebra. Calligraphic A
may represent a simplicial complex, and italic A a torus.
(see, e.g., DeBacker, 2006). An optical character recognizer
that does not keep these letters distinct would be practically
useless in this branch of algebra. However, within a single
style, fonts (Computer Modern, Times, Helvetica, etc.)
should not be distinguished, so that mathematical formulas
can be compared between articles, regardless of the fonts
the publisher has chosen.

OCR problems were considered very early in the devel-
opment of SVM, with promising results. An experiment by
Cortes and Vapnik (1995) achieved 95.8% accuracy on
handwritten digits in the US Postal Service database. More
particularly, in character recognition of human languages
with hundreds of distinct characters, SVM have achieved
promising results, for example, in handwritten Chinese
(99.0%, Dong et al., 2005) and printed Ethiopian (91.5%,
Meshesha and Jawahar, 2005). Recently, SVM has been
applied to handwritten mathematics on a blackboard
(Tapia et al., 2003), but to our knowledge, OCR of printed
mathematics using SVM has not been investigated before.

This paper describes an experiment using SVM to
improve multi-class classification by an existing OCR sys-
tem. This OCR system is a purified version of the Infty-
Reader, a freely available OCR engine for mathematics,
described in Suzuki et al. (2003). First, we study the ability
of various kinds of SVM, as binary classifiers, to distin-
guish pairs of letters that confuse InftyReader. Then, we
show how the classifiers may be integrated with the system
to improve its multi-class classification ability.

2. Ground truth data

The InftyProject defined a set of 1629 mathematical
characters to be distinguished, and released several dat-
abases of ground truth, containing both single-character
and structural recognition results, starting with
InftyCDB-1 (Suzuki et al., 2005), whose composition is
described in (Uchida et al., 2005). Because some mathemat-
ical symbols occur very rarely, it is necessary to choose
between extracting each symbol from documents in their
entirety, or seeking out samples of particularly rare charac-

ters to provide more uniform representation. The newest
databases of the InftyProject, InftyCDB-3-A and
InftyCDB-3-B (Suzuki et al., 2007), targeted at single-char-
acter recognition experiments, cover both approaches.
InftyCDB-3-B represents 20 articles from advanced math-
ematics journals at full length; it consists of a tenth of
the samples of InftyCDB-1, chosen by clustering tech-
niques. InftyCDB-3-A (Suzuki, 2006) aims to represent
rare characters by more samples; it includes not only jour-
nal articles, but font samples, and multiple scans of letters
at different greyscale thresholds. We use InftyCDB-3-A
(188,752 characters, representing 384 symbol entities from
326 documents) for training, and InftyCDB-3-B (70,637
characters, representing 275 symbol entities from 20 docu-
ments) for testing. No database includes samples of all
1629 symbol entities defined by the Infty Project.

In InftyCDB-3-A and InftyCDB-3-B, a sample of
ground truth data for a symbol entity consists of a black
and white bitmap image of that symbol in isolation, framed
inside its bounding box, extracted from a scanned physical
document. Thus, the data set does not test the OCR sys-
tem’s ability to group nearby components together, as in
the two parts of the symbol ‘6’. Because spatial context

is lost, some pairs of symbols, such as hyphens and under-
scores, must be regarded as the same. InftyReader distin-
guishes among these characters after an entire line of text
or mathematical expression was read. Also, light or dark
printing can affect whether a character should be regarded
as bold or not; InftyReader makes such decisions after the
density of all characters on the page is known. Thus, bold
characters are thus identified with their nonbold counter-
parts. German letters, which number too few, and touching
and broken characters, are excluded from our training and
testing data. 2

In Table 1, we present representatives of the 384 symbol
entities appearing in InftyCDB-3-A. Fig. 1 shows the num-
ber of training samples available for each of these classes.
Although an average class has between 500 and 1000 train-
ing samples, more than 75 classes have fewer than 50 train-
ing samples.

3. Confusion matrix

The engine of InftyReader typically makes use of con-
textual information, but for this experiment, we distill it
to ignore information about a character’s size or surround-
ing characters. The purified engine simply classifies images
framed inside bounding boxes. By running the purified
InftyReader engine on the training data, we produce an
integer-valued confusion matrix, with rows that count
ground truth and columns that count recognition results.

2 In the earlier ground truth database InftyCDB-1, touching characters
comprise 1.25% of the character samples. We address the segmentation of
touching characters in (Malon et al., 2007), with a strategy that only needs
to query SVM that are trained to recognize correctly segmented input
images.

C. Malon et al. / Pattern Recognition Letters 29 (2008) 1326–1332 1327

Author's personal copy

Every nonzero off-diagonal entry of this matrix represents
a confusing pair, for which an SVM should be trained.
There are 771 confusing pairs, counted as unordered pairs.

In the confusion matrix, each row represents Infty’s rec-
ognition result and each column represents ground truth.
The set of nonzero entries from each row of the confusion
matrix represents a confusion cluster. The sizes of these
clusters are indicated in Fig. 2. Most clusters consist of
fewer than five alternatives, and the biggest cluster contains
26 alternatives. As the figure shows, the confusion matrix is
relatively sparse, and performing multi-class classification
only on confusing alternatives, instead of all 384 symbols,
significantly reduces complexity. Each cluster can be par-
tially ordered by the likelihoods of each alternative, as indi-
cated by the values of the corresponding matrix entries.

This ordering will be utilized in our multi-class classifica-
tion strategy later.

4. Pairwise classification with SVM

4.1. Features for SVM training

Some of our SVM are trained with directional histo-
grams of the contour, introduced by Kimura et al. (1997)
for Japanese handwriting recognition. For a single mesh,
these feature vectors are constructed from directional his-
tograms, measuring the amount of horizontal, vertical,
and diagonal contour, in each position of the mesh. A sin-
gle pixel contributes to the mesh position in which it lies,
and possibly to several neighboring positions, as deter-
mined by mask functions over the bitmap. These mask
functions sum to one everywhere in the bitmap.

The recognition engine for InftyReader uses differently
sized meshes, in case a character is especially tall or short.
Depending on a character’s aspect ratio, data from a 3 � 5,
5 � 5, or 5 � 3 mesh may be more significant. Our 221-
dimensional ‘‘directional” feature vectors consist of the
aspect ratio, and three blocks, representing the directional
contour histograms from the three mesh sizes. Depending
on the character’s aspect ratio, data from only one or

Table 1
Classes represented in InftyCDB-3-A

Upright Latin

Upright Greek

Calligraphic

Blackboard
Bold

Punctuation

Brackets

Accents

Arrows

Binary
operators

Relational
operators

Big symbols

Other symbols

Italic Latin

Italic Greek

Italic ligatures

Upright
ligatures

0

 10

 20

 30

 40

 50

 60

 70

 80

0 500 1000 1500 2000 2500 3000

N
um

be
r o

f c
la

ss
es

Number of samples

Fig. 1. Histogram of number of training samples, by class.

0

 20

 40

 60

 80

 100

 120

0 5 10 15 20 25 30

N
um

be
r o

f c
la

ss
es

Size of cluster

Fig. 2. Sizes of confusion clusters.

1328 C. Malon et al. / Pattern Recognition Letters 29 (2008) 1326–1332

Author's personal copy

two of the blocks will be regarded as significant and used
for training or testing. For example, an input ‘l’ that has
aspect ratio exceeding 1.7 will use only the 5 � 3 block,
and the aspect ratio, for classification.3

In Vapnik (1995), Vapnik states the philosophy that, in
contrast to classical approaches that work best with
‘‘strong features”, ‘‘it is not important what kind of ‘weak
feature’ one uses; it is more important to form ‘smart’ lin-
ear combinations”. As an extreme example of this philoso-
phy, Cortes and Vapnik’s original SVM study of the USPS
handwritten digit database (Cortes and Vapnik, 1995) uti-
lizes (smoothed, centered, de-slanted) bitmap images as
feature vectors. Bitmaps as feature vectors, sometimes pro-
cessed by principal component analysis, linear discriminant
analysis, or nonlinear normalization, also have been the
basis of more modern OCR experiments with SVM (Dong
et al., 2005; Chang et al., 2004; Meshesha and Jawahar,
2005).

To investigate whether the style-but-not-font distinction
aspect of our recognition problem makes bitmap-based
approaches less effective, or rather if directional features
discard too much potentially useful information, we train
another set of SVM with bitmap-like feature data. Because
characters appear in bounding boxes of different aspect
ratios, we cannot use raw bitmaps directly. Rather, we
impose a 20 by 20 grid onto each bitmap, and measure
the blackness in each grid position. Taking these measure-
ments together with the arctangent of the aspect ratio, we
obtain 401-dimensional ‘‘density” feature vectors.

4.2. Benchmark: A naive classifier

Ideally, we would compare performance of the SVM
against the pure Infty recognizer itself. However, the pure
Infty recognizer does not solve a binary classification prob-
lem like the SVM classifiers do. We can only say that the
rate at which it picks a class A over a class B in binary
selection should be greater than the rate at which it selects
A out of all possible classes, and vice versa. These two
bounds typically yield an interval too wide to be informa-
tive, so we implement a naive binary classifier as a more
precise benchmark.

The naive classifier is constructed by recording the cen-
troids of the sets of feature vectors representing instances
of each symbol in the training data. We use the directional
feature vectors for this construction. The naive classifier
can perform either multi-class or binary classification; in
any case, it assigns a test sample to the class with the closest
centroid.

4.3. SVM training and performance

Altogether, we consider five forms of SVM construc-
tions. On the directional features, we construct SVM with
linear, Gaussian, and cubic polynomial kernels. On the
density features, we construct SVM with linear and cubic
polynomial kernels. These kernels have the forms:

K linearð~x;~yÞ ¼~x �~y ð1Þ

KGaussianð~x;~yÞ ¼ e�ck~x�~yk2 ð2Þ
Kcubicð~x;~yÞ ¼ ðc~x �~y þ 1Þ3 ð3Þ
Support vector machines are trained to perform binary
classification by solving the following optimization prob-
lem. Given training data with feature vectors ~xi assigned
to class yi 2 { � 1, 1} for i = 1, . . . , l, the support vector
machines solve

min
~w;b;~n

1

2
Kð~w;~wÞ þ C

Xl

i¼1

ni

subject to yiðKð~w; ~xiÞ þ bÞP 1� ni

ni P 0

ð4Þ

where~n is an l-dimensional vector, and ~w is a vector in the
same feature space as the ~xi (see, e.g., Hsu et al., 2003). The
solution determines the classifier

f ð~xÞ ¼ sgnðKð~w;~xÞ þ bÞ:
We use the LibSVM software Chang and Lin (2001) to
train SVM classifiers.

The performance of a binary classifier f that assigns an
input vector~x of label y to the class f ð~xÞ, may be measured
using the smaller of the recognition rates of the classes:

min
c¼�1;1

P ðf ð~xÞ ¼ yjy ¼ cÞ

We call this number the min-recall of the classifier.
Before training an SVM, the soft margin C and any

parameters appearing in the kernel K must be chosen in
advance (here, c). For the linear and Gaussian kernel
experiments using directional features, we choose these
parameters by fivefold cross-validation. Each training doc-
ument is assigned, in its entirety, at random to one of five
sets. For each binary classification problem, the cross-val-
idation accuracy for a choice of parameter values is com-
puted by the leave-one-out method. Parameter choices
are inspected within a grid in logarithmic space, and the
grid is expanded until the accuracy stabilizes or begins
decreasing at all boundaries, or until an 8-min timeout.
The parameter choice producing the highest cross-valida-
tion accuracy is used once more to train the final SVM
for the problem on the entire training set. This procedure
cannot be performed on a binary classification problem if
all the training data for either class is concentrated in a sin-
gle one of the five sets; for the 17 (of 771) pairs where we
have so little data, we do not construct a binary SVM.

In fact, the parameter choice is rarely important for the
linear SVM; up to the hardest soft margin considered,

3 The SVM uses the 221-dimensional feature vector, with the insignif-
icant blocks’ coordinates changed to zero, for training and testing. The
naive classifier assigns a testing sample to a class by finding the nearest
centroid in the feature subspace consisting of blocks that are significant for
that sample. Within a single class, not every training sample will have the
same significant blocks, so the centroids for each block are computed
separately.

C. Malon et al. / Pattern Recognition Letters 29 (2008) 1326–1332 1329

Author's personal copy

accuracies typically remain the same, as one would expect
if the data were linearly separable. A softer hard margin
produces a 3% or greater improvement in min-recall on
four pairs, and the constant choice C = .01 produces the
best accuracies on training data overall. For the Gaussian
kernel, as well, there is a parameter setting that yields
cross-validation accuracies on each problem that are nearly
as high as if the assignment is allowed to vary with the
problem.

The binary classifiers are then evaluated on the testing
data set. In Tables 2 and 3, we compare their performance
against each other and the naive classifier, for contour
directional features and for density features. These tables
give the percentage of confusing pairs on which each clas-
sifier surpasses various min-recall thresholds. This evalua-
tion is only carried out for the 528 confusing pairs for
which both classes have at least 10 samples of testing data.

Using contour directional features, each SVM kernel
substantially exceeds the performance of the naive classi-
fier. The Gaussian kernel falls short of the performance
of the linear kernel. Feature choice matters greatly, per-
haps because training samples are so scarce. With density
features, the linear SVM performs slightly worse than with
directional features, but more complicated kernels perform
far worse, not even matching the naive classifier’s bench-
mark. These kernels require more training time, so that
fewer kernel parameter choices can be tested within the
8 min training limit. The linear SVM with directional fea-

tures is efficiently chosen, trained, and utilized, and is as
effective as the other classifiers, so we will use it as the basis
for the analyses and multi-class experiments in the follow-
ing sections.

The confusing pairs on which the linear SVM achieves
the greatest improvement in min-recall over the naive clas-
sifier are shown in Fig. 3. The most difficult pairs for SVM
are shown in Table 4; as expected, many of these require
large fractions of training vectors for support. Remark-
ably, many distinctions are adequately learned by the linear
SVM without much training data. Even among the 53 con-
fusing pairs with fewer than 25 samples in the smaller class,
the average min-recall is 96.2%.

5. Multi-class classification

By starting with a fast classifier, we reduce our multi-
class classification problem from 1629 classes to the size
of the confusion cluster of an Infty recognition result,
which can vary as shown in Fig. 2. Popular methods of
combining binary SVM to perform multi-class classifica-
tion are reviewed in Hsu and Lin (2002), including a
method based on one-versus-all classifiers, and two meth-

Table 2
SVM performance on confusing pairs, using contour directional features

Min-recall Naive
(%)

SVM linear
(%)

SVM
Gaussian (%)

SVM
cubic (%)

>0 100.00 100.00 100.00 100.00
>.5 98.67 99.05 99.05 99.05
>.6 98.30 98.48 98.67 98.48
>.7 97.35 98.30 98.30 98.30
>.8 95.27 97.35 97.54 97.35
>.9 93.75 95.83 95.64 95.64
>.95 90.91 92.99 93.18 92.61
>.97 84.28 90.34 89.77 89.96
>.99 73.30 84.28 82.95 84.28
>.995 66.86 78.22 74.62 77.84
>.999 56.82 69.13 64.39 69.89

Table 3
SVM performance on confusing pairs, using density features

Min-recall SVM linear (%) SVM Gaussian (%) SVM cubic (%)

>0 100.00 99.60 96.21
>.5 98.86 97.18 94.51
>.6 98.48 96.98 94.32
>.7 98.11 96.18 92.99
>.8 97.16 94.97 91.10
>.9 94.70 91.75 88.07
>.95 91.10 86.92 83.33
>.97 88.83 80.08 78.22
>.99 82.58 71.03 70.83
>.995 78.03 67.00 66.29
>.999 67.80 55.33 51.14

Fig. 3. Pairs on which the min-recall of linear SVM with directional
features is at least 10% higher than that of the naive classifier.

Table 4
Pairs with linear SVM min-recall below .80

Min-recall x-recall y-recall x y Max SV fraction

0.1042 0.1042 0.9553 .3548

0.1042 0.1042 1.0000 .1935

0.1250 1.0000 0.1250 .1935

0.3333 0.3333 1.0000 .3548

0.4211 0.4211 0.9306 .2934

0.5750 0.9907 0.5750 .0698
0.5843 0.5843 0.8704 .1718

0.5909 0.5909 1.0000 .1400

0.6136 0.6136 1.0000 .1200

0.7222 0.7222 0.9297 .3768

0.7407 1.0000 0.7407 .1236

0.7407 0.9826 0.7407 .0356

0.7407 0.9943 0.7407 .0300

0.7833 0.9535 0.7833 .2556

1330 C. Malon et al. / Pattern Recognition Letters 29 (2008) 1326–1332

Author's personal copy

ods based on one-versus-one classifiers (the max-wins and
directed acyclic graph approaches). Each approach has
well-known drawbacks, and none is suited to utilize a priori

information about the likelihood of alternatives, though
the directed acyclic graph method requires an order for
the candidates to be chosen, whose implications are far
from obvious.

Any of these methods could be applied directly to a con-
fusion cluster, but instead, we use a method that utilizes the
ranking of alternatives in a confusion cluster, to make it
likely that the most likely misrecognitions will be tested
with an SVM.

For an Infty recognition result i, the confusion cluster
C(i) of misrecognition candidates is partially ordered by
likelihood, as explained in Section 3. Let C0(i) be the subset
of alternatives j 2 C(i) for which a binary SVM comparing j

and i was constructed. After the pure Infty engine recog-
nizes a character as i, our method starts to apply the
SVM for (j, i) for each j 2 C0(i), starting with the most
likely j. When any j wins over i in the SVM classification,
the testing is stopped, and j is reported as the classification.
If no j wins, i is kept as the classification.

This method requires us only to train SVM on confusing
pairs; other one-versus-one approaches would require us to
train SVM on all pairs of letters that appear together in
some confusion cluster. Of course, testing complexity is
also linear in the number of letters in a cluster.

Without SVM, the pure Infty engine recognizes charac-
ters with 96.10% accuracy on our testing data set. Using
SVM by this method, the recognition rate rises to
97.70%, so that the number of misrecognized characters
falls by 41%.

When Infty makes the correct choice and our method
does not, it always means that an SVM’s decision was at
fault. If neither Infty nor our method chooses correctly,
three phenomena can explain the mistake. The SVM test-
ing the Infty’s choice against the right alternative may have
chosen the wrong result when it was reached (we count the
cases where an SVM was not trained, because of insuffi-
cient data, as such a case). The confusion of Infty’s guess
for the correct answer might not have occurred in the train-
ing data, so that the right alternative was not represented in
the confusion cluster; we call this situation an ‘‘unprece-
dented mistake”. The final alternative is called ‘‘shadow-
ing”. On an instance of testing data for which Infty
guesses i, and the correct answer is k, we say that an
SVM is ‘‘shadowed” if some other alternative j occurs
before k in the confusion cluster, and j defeats i, so that
the i versus k classifier is never run.

Altogether, the classification on the 70,637 testing sam-
ples may be synopsized as follows:

� Infty right, output right: 67,100,
� Infty wrong, output right: 1912,
� Infty right, output wrong: 784,
� Infty wrong, output wrong, SVM wrong or not trained:

399,

� Infty wrong, output wrong, unprecedented mistake: 280,
� Infty wrong, output wrong, SVM shadowed: 162.

If shadowing happened frequently, our multi-class strat-
egy would be inappropriate, but this data shows that it
happens quite rarely.

6. Style distinction

One novel aspect of our single-character recognition
problem is the distinction of a letter in Roman, italic, cal-
ligraphic, and blackboard bold styles, regardless of its font.
The efficacy of SVM on this aspect of the problem is com-
pared to that of other techniques in Table 5.

The decrease in the number of confusing pairs means
that the SVM can distinguish certain styles with 100%
accuracy that pose confusion to other classifiers. The total
number of style mistakes decreases from Infty to SVM by a
greater margin than the misrecognition rate overall.

With occasional mistakes, the naive classifier typically
can distinguish calligraphic and blackboard bold from
other styles. Its main weakness is the distinction of italic
characters. The linear SVM shows significant improvement

Table 5
Style misrecognitions on testing data

Naive Infty SVM

Total number of confused pairs 315 321 256
Confused pairs representing style mistakes 46 51 37
Total number of misrecognitions 3,832 2,753 1,625
Style recognition errors 254 219 116

Failures Successes Successes Failures

Failures Successes Successes Failures

Fig. 4. Classification of the same letters in different styles.

C. Malon et al. / Pattern Recognition Letters 29 (2008) 1326–1332 1331

Author's personal copy

in this regard. In Fig. 4, we display three italic pairs that
are markedly improved with SVM.

The only case where linear SVM performed remarkably
worse than the naive classifier was in the distinction of
lower case italic l from script lower case ‘.

7. Summary

We have demonstrated the effectiveness of SVM on a
large multi-class problem, with many similar symbols and
many classes with little training data. The SVM managed
to learn many binary classifications well for which there
was a paucity of training data. Though all SVM kernels
provided about the same performance on directional fea-
tures, the linear classifier had superior performance on den-
sity features. Generally, SVM trained on directional
features performed marginally better than SVM trained
on density features. The SVM excels at distinguishing styles
of characters, particularly italic and nonitalic variants,
which are indistinguishable to simpler methods using the
same sets of features.

We have integrated these SVM into the solution of a
large multi-class problem, by testing only pairs of symbols
mistaken by an existing OCR system. The complexity is
low, and the most likely confused alternatives are preferred
by the algorithm. The single-character misrecognition rate
of the OCR system falls by 41% with the introduction of
SVM. We note that we do not omit pairs often regarded
as indistinguishable without size information (lower and
upper case versions of C, O, P, S, U, V, X, and Z) in report-
ing our recognition rate.

Many of the mistakes that remain after the application
of SVM represent characters that are truly indistinguish-
able without contextual information (such as the charac-
ter’s size relative to surrounding characters), or that
represent degraded character images. We will try to
improve the use of contextual information in Infty, and
develop better methods for the treatment of touching and
broken characters, in future work.

Acknowledgement

This work was supported by the Kyushu University 21st
Century COE Program, ‘‘Development of Mathematics
with High Functionality”.

References

Anderson, R., 1968. Syntax-directed recognition of hand-printed two-
dimensional mathematics. Ph.D. Thesis, Harvard University.

Chang, C.-C., Lin, C.-J., 2001. LIBSVM: A library for support vector
machines. <http://www.csie.ntu.edu.tw/%7Ecjlin/libsvm>.

Chang, F., Lin, C.-C., Chen, C.-J., 2004. Applying a hybrid method to
handwritten character recognition. In: ICPR ’04: Proc. 17th Internat.
Conf. on Pattern Recognition, vol. 2. IEEE Computer Society,
Washington, DC, USA, pp. 529–532.

Chan, K.-F., Yeung, D.-Y., 2000. Mathematical expression recognition: a
survey. IJDAR 3 (1), 3–15.

Cortes, C., Vapnik, V., 1995. Support-vector networks. Mach. Learn. 20
(3), 273–297.

DeBacker, S., 2006. Stable distributions supported on the nilpotent cone
for the group G2. In: The Unity of Mathematics; Honor of the 90th
Birthday of I.M. Gelfand, Progress in Mathematics, vol. 244.
Birkhäuser, Boston.

Dong, J.-X., Krzyzak, A., Suen, C., 2005. An improved handwritten
Chinese character recognition system using support vector machine.
Pattern Recognition Lett. 26 (12), 1849–1856.

Eto, Y., Suzuki, M., 2001. Mathematical formula recognition using virtual
link network. In: ICDAR ’01: Proc. 6th Internat. Conf. on Document
Analysis and Recognition. IEEE Computer Society Press, pp. 430–437.

Garain, U., Chaudhuri, B.B., Ghosh, R.P., 2004. A multiple-classifier
system for recognition of printed mathematical symbols. In: ICPR ’04:
Proc. 17th Internat. Conf. on Pattern Recognition. IEEE Computer
Society, Washington, DC, USA, pp. 380–383.

Hsu, C.-W., Chang, C.-C., Lin, C.-J., 2003. A practical guide to support
vector classification. <ttp://www.csie.ntu.edu.tw/%7Ecjlin/papers/
guide/guide.pdf>.

Hsu, C.-W., Lin, C.-J., 2002. A comparison of methods for multi-class
support vector machines. IEEE Trans. Neural Networks 13, 415–425.

Kanahori, T., Suzuki, M., 2003. Detection of matrices and segmentation
of matrix elements in scanned images of scientific documents. In:
ICDAR ’03: Proc. 7th Internat. Conf. on Document Analysis and
Recognition. IEEE Computer Society, Washington, DC, USA, pp.
433–437.

Kimura, F., Wakabayashi, T., Tsuruoka, S., Miyake, Y., 1997. Improve-
ment of handwritten Japanese character recognition using weighted
direction code histogram. Pattern Recognition 30 (8), 1328–1329.

Malon, C., Uchida, S., Suzuki, M., 2007. Separation of touching
characters using DP matching. In: IEICE Technical Report
PRMU2006: Proc. IEICE Conf. Pattern Recognition and Machine
Understanding, pp. 13–18.

Meshesha, M., Jawahar, C., 2005. Recognition of printed Amharic
documents. In: ICDAR ’05: Proc. 8th Internat. Conf. on Document
Analysis and Recognition. IEEE Computer Society, Washington, DC,
USA, pp. 784–788.

Murakami, M., Suzuki, M., 2002. Improvement of mathematical struc-
tural analysis by Center-Band. IEICE Technical Report PRMU2001-
270, pp. 203–210.

Suzuki, M., Kanahori, T., Ohtake, N., Yamaguchi, K., 2004. An
integrated OCR software for mathematical documents and its output
with accessibility. In: Computers helping people with special needs, 9th
Internat. Conf. on ICCHP 2004, Paris (July 2004). Lecture Notes in
Computer Science, vol. 3119. Springer, pp. 648–655.

Suzuki, M., Malon, C., Uchida, S., 2007. Databases of mathematical
documents. Research Reports on Information Science and Electrical
Engineering of Kyushu University 12(1), 7–14.

Suzuki, M., Tamari, F., Fukuda, R., Uchida, S., Kanahori, T., 2003.
Infty: an integrated OCR system for mathematical documents. In:
DocEng ’03: Proc. 2003 ACM Symposium on Document Engineering.
ACM Press, New York, NY, USA, pp. 95–104.

Suzuki, M., Uchida, S., Nomura, A., 2005. A ground-truthed mathemat-
ical character and symbol image database. In: ICDAR ’05: Proc. 8th
Internat. Conf. on Document Analysis and Recognition (Washington,
DC, USA, 2005). IEEE Computer Society, pp. 675–679.

Suzuki, M., 2006. InftyCDB-3: a ground truthed database of words/
formulae images, third distribution. <http://www.inftyproject.org/en/
database.html>.

Tapia, E., Rojas, R., 2003. Recognition of on-line handwritten mathe-
matical formulas in the E-Chalk system. In: ICDAR ’03: Proc. 7th
Internat. Conf. on Document Analysis and Recognition (Washington,
DC, USA). IEEE Computer Society, pp. 980–984.

Uchida, S., Nomura, A., Suzuki, M., 2005. Quantitative analysis of
mathematical documents. Internat. J. Document Anal. Recognition 7
(4), 211–218.

Vapnik, V., 1995. The Nature of Statistical Learning Theory. Springer-
Verlag, New York Inc., New York, NY, USA.

1332 C. Malon et al. / Pattern Recognition Letters 29 (2008) 1326–1332

