We have \(q_1 \delta_1 = p \delta_0 \) by the corollary to Proposition 5. Therefore, it is sufficient to prove (2) for \(k \geq 2 \). Set \(\sigma = i_k \), and let us consider the surface \(M_{\sigma} \) obtained by the \((\sigma - 1)\)-th blowing up in the process to get \(M \) from \(M_1 \). We may say that \(M_{\sigma} \) is the surface obtained by the blowing down of \(L_{k+1}, L_h, \ldots, L_{k+1} \) successively from \(M \). Let \(\pi_{\sigma} : M \rightarrow M_{\sigma} \) be the contraction mapping. As in the previous sections, let us denote the proper images of \(C, C_k, E_i \) in \(M_{\sigma} \) by \(C(\sigma), C_k(\sigma), E_i(\sigma) \) respectively. By Theorem 3, \(C_{k+1}(\sigma) \) intersects transversely \(E_\sigma(\sigma) \) at the same point \(Q = \pi_{\sigma}(L_{k+1} \cup \cdots \cup L_{h+1}) \) as \(\sigma(\sigma) \). Hence, the functions \(f_k \) and \(g_{k+1} \) on \(M_{\sigma} \) have the same indetermination point \(Q \in E_\sigma(\sigma) \). Let \(\nu_i, \nu_i(\sigma = 0, 1, \ldots, \sigma) \) be the solutions of the following equations:

\[
\sum_{j=0}^{\sigma}(E_i(\sigma) \cdot E_j(\sigma))\nu_j = \left\{ \begin{array}{ll}
0 (i \neq \sigma) \\
d_{k+1}(i = \sigma)
\end{array} \right.
\]

\[
\sum_{j=0}^{\sigma}(E_i(\sigma) \cdot E_j(\sigma))\nu_j = \left\{ \begin{array}{ll}
0 (i \neq \sigma) \\
1 (i = \sigma)
\end{array} \right.
\]

Hence, by Lemma 4, we have \(\nu_i = d_{k+1}\nu_i \) for all \(i = 0, 1, \ldots, \sigma \). In particular,

\(\delta_i = \bar{\delta}_i \cdot d_{k+1}, (i = 0, 1, \ldots, k) \).

Therefore, in order to prove (2), it is sufficient to prove

\(q_k \delta_k \in N_0\bar{\delta}_0 + N_1\bar{\delta}_1 + \cdots + N_{k-1}\bar{\delta}_{k-1} \).

By Theorem 3, \(\overline{C}_k(\sigma) \) intersects \(E_{i_k}(\sigma) \) transversely and does not intersects other components \(E_i(\sigma) (i \neq j_k) \). We have

\[
\bar{\delta}_k = (P_{g_{k+1}}(\sigma) \cdot \overline{C}_k(\sigma))
\]

\[
= (\overline{C}_{k+1}(\sigma) \cdot \overline{C}_k(\sigma))
\]

\[
= (\overline{C}_{k+1}(\sigma) \cdot P_{g_k}(\sigma)).
\]