
Calculation system for the dual graph of resolution

of the algebraic curve singularities using Risa/Asir

M. Fujimoto

Department of Mathematics

Fukuoka University of Education

fujimoto@fukuoka-edu.ac.jp

M. Suzuki

Graduate School of Mathematics

Kyushu University

suzuki@math.kyushu-u.ac.jp

September 8, 2004

Abstract

In this paper, we introduce a method of generating the dual graph
of the minimal normal resolution of the algebraic curve singularities.
Using factorization of polynomials over algebraic extension field, we
can calculate the dual graph from the coefficients of the given poly-
nomial exactly. The computing process includes no approximation.
We constructed the system to generate the dual graph on Risa/Asir.
Users can get the resulting dual graph by the list form and also by the
graphical form.

1 Introduction

A resolution of an algebraic curve C at a singular point p of C is said minimal
normal, if the union of the proper transform of C and the exceptional curve
E of the resolution is of normal crossing type in a neighborhood of E, and
it is “minimal” among the resolutions having this property. Usually, the
geometric configuration of the resolution is represented by a weighted graph,
called the “dual graph”.

The dual graph of the minimal normal resolution of the algebraic curve
singularities is one of the most fundamental invariants in algebraic geometry.
At present, there is no computing system for the dual graphs.

Our method computes the dual graphs of the minimal normal resolutions
of the algebraic curve singularities at origin defined by polynomials in two



variables with coefficients in the algebraic extension field over the rational
number field. We can calculate the dual graph from the coefficients of the
given polynomial exactly. The computing process includes no approxima-
tion.

In our algorithm, Newton Polygon Algorithm is used to obtain Puiseux
pairs. Newton Polygon Algorithm needs finding roots of polynomials with
coefficients in the algebraic extension field over the rational number field.
We implemented this algorithm on Risa/Asir, a computer algebra system
developed at FUJITSU LABORATORIES LIMITED ([4]). Risa/Asir is
good at computing Gröbner basis and factoring polynomials over algebraic
extension fields, which was very suited to implement our algorithm.

In this paper, we show the algorithm generating the dual graph, and
introduce our system on Risa/Asir.

2 Blowing Ups and Dual Graphs

We shall assume from now on that M is a non-singular projective algebraic
surface over the complex number field and E an algebraic curve on M .

Definition 1 (Normal crossing type) If each irreducible compornent of
E is non-singular and intersect each other at only one point at most, then
E is called of normal crossing type.

Definition 2 (Dual graph) For a curve E of normal crossing type, we
represent each irreducible component of E by a vertex and join the vertices
if and only if the corresponding irreducible components intersect each other.
We associate to each vertices an integer, called weight, equal to the self-
intersection number of the corresponding irreducible component on M . The
weighted graph thus obtained will be called the dual graph of E.

Let C be an algebraic curve on M passing through a point P . By
replacing the point P with P1 we can construct new algebraic surface M ′.
This operation is called blowing up at a point P . And the curve on M ′

corresponding to C \ P (resp. P1) is called proper transform of C (resp.
exceptional curve). The resolution of an algebraic curve at a singular point
is obtained by finitely many blowing up operations ([2]).

Following lemmas related to blowing up are well-known.

Lemma 1 The self-intersection number of the exceptional curve obtained
by a blowing up is −1.

Lemma 2 The self-intersection number N of the exceptional curve E de-
crease to N − 1 by a blowing up at a point of E.



From these lemmas, the dual graph relating a resolution of an algebraic
curve at a singular point is obtained.

For example, (See Definition 2)
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Lemma 3 Let E1, E2, . . . , Er, Er+1 be the irreducible components of E and
assume that the dual graph is of the following linear type :
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Furthermore assume that there exists a holomorphic function f on a
neighborhood U in the following form.

(f) =
r∑

i=0

miEi + mr+1Er+1 ∩ U.

Then,

(1) m2, . . . , mr+1 are all multiple of m1.

(2) Set pi = mi/m1 (1 ≤ i ≤ r + 1), then (pr+1, pr) are coprime each
other and the following continuous fraction expansion holds.

pr+1

pr
= nr −

1

nr−1 −
1

nr−2 − . . .
−

1

n1

Proof. Since (f) · Ei = 0, we have mi+1 = nimi − mi−1 for i = 1, 2, . . . , r,
where m0 = 0. The two assertions of the lemma are immediate consequences
of these equations. �



Definition 3 (Intersection matrix) Let E1, E2, . . . , Er be the irreducible
components of E. We call

IE = ((Ei · Ej))i,j=1,...,r

the intersection matrix of E.

The following two lemmas can also be proved by a direct computation.

Lemma 4 The determinant det(−IE) is invariant under the blowing ups of
the points on E. Namely, if τ : M ′ → M is a blowing up of a point P on
E, we have then det(−Iτ−1(E)) = det(−IE).

Lemma 5 Assume that the dual graph is of the following type :
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We have then

det(−IE) = pq − aq − bp,

where p, a, q, b are the natural numbers defined by the continuous fractions

p

a
= m1 −

1

m2 −
1
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−

1

mr

q

b
= n1 −

1

n2 −
1

n3 − . . .
−

1

ns

satisfying

(p, a) = 1, (q, b) = 1, 0 < a < p, 0 < b < q.

3 Newton Polygon Algorithm

Let f(x, y) be a polynomial in two variables with complex coefficients. We
can write f(x, y) =

∑
cαβxαyβ .



Definition 4 (Newton polygon) The Newton Polygon of f is the convex
closure of set

⋃

cαβ 6=0

{(α, β) + R2
+}

The Newton boundary of f is the union of compact faces of the boundary
of the Newton polygon of f .

Notice that the boundary of the Newton polygon differs from the Newton
boundary by two non-compact faces parallel to the coordinates axes.

We assume f(0, 0) = 0 and f(x, y) is not divisible by x. We choose
one among segments constructing Newton boundary, let ∆0 be the segment.
And let − 1

µ0
be its slope. Then µ0 is a positive rational, say

µ0 =
p0

qo

where p0, q0 are coprime positive integers. Let f∆0
(x, y) =

∑

(α,β)∈∆0
cαβxαyβ

and t0 a nonzero root of f∆0
(1, t) = 0.

Next we shall substitute x = xq0

1 and y = xp0

1 (t0 + y1) for f(x, y). And
we get

f(xq0

1 , xp0

1 (t0 + y1)) =
∑

cαβxq0α+p0β
1 (t0 + y1)

β

= xq0α0+p0β0

1 f1(x1, y1)

where (α0, β0) ∈ ∆0 and f1(x1, y1) is a polynomial in x1 and y1, not divisible
by x1.

We now repeat the whole process, replacing f(x, y) by f1(x1, y1), and
continue indefinitely. We obtain a sequence of positive rationals

µ0 =
p0

q0
, µ1 =

p1

q1
, µ2 =

p2

q2
, . . .

and complex numbers
t0, t1, t2, . . .

(pi, qi) is called Puiseux pair. Using {(pi, qi)} and {ti} we can get the
Puiseux expansion of f(x, y) ([3]). The whole process is called Newton Poly-
gon Algorithm.

4 Computation of Dual Graph

Let f(x, y) be a polynomial in two variables with coefficients in the algebraic
extension field over the rational number field. Moreover we assume that the
algebraic curve C defined by f(x, y) = 0 has an isolated singularity at origin.



4.1 The method by Puiseux Pair

Using Squarefree Decomposition Algorithm we can find multiple factors of
f ([1]). Here, we assume that f has not multiple factors.

Using Newton Polygon Algorithm we get Puiseux pairs (pi, qi) of f until
(i) Newton boundary is parallel to a coordinate axis or (ii) Newton polygon
is of following type :

.
.
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Notice that in case of (ii) the proper transform of C and yk-axis intersect
transversely.

Let (p0, q0), (p1, q1), . . . , (pk−1, qk−1), (pk, 1) be obtained Puiseux pairs.
As shown below, using k Puisuex pairs (p0, q0), (p1, q1), . . . , (pk−1, qk−1) we
can get the dual graph for f .

For each Puiseux pair (pi, qi) of f if pi > 1 and qi > 1, then (pi, qi) coin-
sides with (p, q) in Lemma 5. From the fact that the determinant det(−IE)
is equal to 1 when the algebraic curve E is locally irreducible, we get a pair
of natural numbers (a, b) such that

piqi − aqi − bpi = 1, (pi, a) = 1, (qi, b) = 1, 0 < a < pi, 0 < b < qi ,

and we can determine m1, m2, . . . , mr, n1, n2, . . . , ns in Lemma 5 by continu-
ous fraction expansions of pi/a, qi/b. Namely, the dual graph corresponding
to this Puiseux pair is following type :
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where Bi is a branch vertex such that B0 is omitted and the weight of Bk

is −1.

If pi = 1, then the dual graph is of following type :
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If qi = 1, then the dual graph is of following type :

PSfrag replacements

f = y2 − x3

f = (y2 − x3)2 + y5

−1
−2
−3

α
β

pk

1
−mr

−mr−1

−m1

−2
−n1

−ns−1

−ns

Bi+1Bi

−2
−qi − 1

︸ ︷︷ ︸

qi−1
−2−2−2−2−2

︸ ︷︷ ︸

pi−1

4.2 Another method for locally irreducible case

The algorithm described in 4.1 is not only used in case of locally irreducible
but also locally reducible. However, the algorithm needs factoring polyno-
mials over algebraic extension field. In general, this computation is very
heavy.

If f is locally irreducible, there exists another algorithm for the com-
putation of dual graph does not need factoring polynomials over algebraic
extension field. Here we introduce the another method.

Let f(x, y) be a polynomial in two variables with coefficients in the alge-
braic extension field L over the rational number field Q. Moreover assume
that the algebraic curve C defined by f(x, y) = 0 has an isolated singularity
at origin and is locally irreducible. Let C ′ be the proper transform of C
obtained by a blowing up, h(x, s) the defining polynomial of C ′. Notice that
if f is locally irreducible, the exceptional curve obtained by the blowing up
intersects C ′ at only one point. Using this fact, it follows that the root of
h(0, s) is in L. Thus we can compute the intersection point without factoring
polynomials over algebraic extension field.

Step 1. For the defining polynomial f of C, compute the defining polynomial
h of the proper transform C ′ of C by a blowing up.

Step 2. Compute the intersection point P of C ′ and the exceptional curve
obtained by Step 1.

Step 3. If P is in origin, then let f = h and go to Step 1. Otherwise, for
h do the coordinate transformation such that C ′ passes through origin, say
h′.

Step 4. If the multiplicity of h′ is 1, then terminate. Otherwise, let f = h′

and go to Step 1.



4.3 Implementation and Examples

In this section, we introduce some of functions on Risa/Asir, which were
implemented by us in order to compute dual graphs.

4.3.1 roots

Let poly be a polynomial in one variable with coefficients in the algebraic
extension field over the rational number field.

roots(poly) returns the list of all roots of the polynomial poly. In this
function, the function af in the package ‘sp’ is used.

Example 1

[0] A0=newalg(x^2-x+1);

(#0)

[1] roots(81*x^4+(-18*A0)*x^2+(A0-1));

[(#1),(-#1)]

[2] roots(x^5+A0*x^2-1);

[(#4),(-#4-#3-#2+#0-1),(#3),(#2),(-#0+1)]

4.3.2 n polygon

Let poly be a polynomial in two variables with coefficients in the algebraic
extension field over the rational number field.

n polygon(poly,flag) returns the Newton polygon of poly. If flag is 0,
then the result is outputted by the list form. If flag is 1, by the list form
and the graphical form.

Example 2

[0] F=3*y^3+x*y^5-2*x*y+x^3*y^2+x^4+x^5+x^6*y^2$

[1] n_polygon(F,0);

[[[3,[0,3]],[-2,[1,1]]],[[-2,[1,1]],[1,[4,0]]]]

[2] n_polygon(F,1);
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4.3.3 p pair

Let poly be a polynomial in two variables with coefficients in the algebraic
extension field over the rational number field.

p pair(poly,n) returns n Puisuex pairs of poly.

Example 3

[0] F=((y^3+x)^2+x^5)^2+x^9*y^3+x^10$

[1] p_pair(F,4);

[[1,3],[9,2],[9,2],[9,1]]

4.3.4 dualgraph

Let poly be a polynomial in two variables with coefficients in the algebraic
extension field over the rational number field, C the algebraic curve defined
by poly.

dualgraph(poly,flag) returns the dual graph of the minimal normal res-
olution of the algebraic curve defined by poly. If flag is 0, then the result is
outputted by the list form. If flag is 1, by the list form and the graphical
form.

In case of locally irreducible, this function use the method of 4.2. Oth-
erwise, this function use the method of 4.1.

Example 4

[0] F=((y^3+x)^2+x^5)^2+x^9*y^3+x^10$

[1] dualgraph(F,0);

[[],-2,[-2,-2]]

[[-2,-2,-2,-3],-2,[-2]]

[[-2,-2,-2,-3],-1,[-2]]

[2] dualgraph(F,1);
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Where the square in the figure is associated with the proper transform of C.



5 Conclusion

We have presented the method for the computation of the dual graph. Fur-
thermore we implemented our algorithm on Risa/Asir. This system can
compute the dual graph in both of locally irreducible case and reducible
case. In reducible case, factoring polynomials over algebraic extension field
is needed. This computation is very heavy. However, since this factoring
function is planning to be improved on next version of Risa/Asir, the per-
formance of our system will be also improved.
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