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Introduction

Let C be an irreducible algebraic curve in the complex affine plane C?. We shall
say that C has one place at infinity, if the normalization of C is analytically
isomorphic to a compact Riemann surface punctured by one point.

There are several works concerning the classification problem of the affine
plane curves with one place at infinity to find the canonical models of these
curves under the polynomial transoformations of the coordinates of C?.

In the case when C'is non-singular and simply connected, Abhyankar-Moh[1]
and Suzuki[11] proved independently that C' can be transformed into a line by a
polynomial coordinate transformation of C*. Namely, in this case, we can take
a line as a canonical model.

In case C is singular and simply connected, Zeidenberg-Lin[12] proved that
C has the canonical model of type y? = 2P, where p and ¢ are coprime integers
> 2.

Assuming that C is non-singular, the cases when the genus g of C is 2, 3
and 4 were studied by Neumann[8], A’Campo-Oka[3] from the topological view
point and by Miyanishi[4] from the algebrico-geometric view point. Miyanishi[5]
classified the dual graphs of the curves which appears by the minimal resolution
of the singularity at infinity. Recently, Nakazawa-Oka[7] gave the classification
of all the canonical models for the cases g < 7, and in its appendix, Nakazawa
gave the classification for g < 16 without proof.

In the present paper, we shall first explain how to get the canonical compact-
ification (M, E) of C? corresponding to the minimal resolution of the singularity
of the curve C at infinity (after taking the coordinate system of C? which mini-
mize the degree of the defining equation of C'), and then we shall study the dual
graph ['(E) of the boundary curve E.

In this way, we shall first get a new simple proof to the above mentioned
Abhyankar-Moh-Suzuki theorem. Next, we shall make it clear the relationship
between the dual graph I'(E) and the d-sequence of Abhyankar-Moh theory.
We shall get a new algebrico-geometric proof to the beautifull so-called semi-
group theorem of Abhyankar-Moh [2] and its inverse theorem due to Sathaye-
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Stenerson[9]. Our new proof gives us also an algorithm to compute the weights
of the dual graph I'(E) by computer® .

To end this introduction, I would like to express here my hearty thanks to
Mr.Takashi Oishi and Mr.Koichi Koide for their help at the begining of this
research to the experimental calculation of various algebraic invariants of the
dual graphs by computer.

1 Preliminaries

1.1 Primitive Polynomials

Let f(z,y) be a polynomial function on the complex affine plane C? with co-
ordinate system z and y. f(z,y) will be called primitive if the algebraic curve
defined by f(z,y) = ain C? is irreducible for all complex numbers o except for
a finite number of a’s. The following proposition is well known (see for example
the Appendix of Furushimal[4]).

Proposition 1 For any polynomial f(x,y), there exists a primitive polynomial
F(z,y) and a polynomial ¢(2) of one variable z such that f(x,y) = @(F(x,y)).

From this proposition, we can get the following corollary.
Corollary. Irreducible polynomials are always primitive.

Infact, let us write f(z,y) in the form

f(z,y) = p(F(z,y))

by a primitive polynomial F'(z,y) and a polynomial ¢(z) of one variable z. Since
the curve C : f(z,y) = 0 is irreducible and f takes the zero of order 1 on C,
¢(z) vanishes only on z = 0 and takes the zero of order 1 on z = 0. Therefore
©(z) is a polynomial of degree 1. This implies that f is primitive.

1.2 Dual graph

We shall assume from now that M is a non-singular projective algebraic surface
over the complex number field and E an algebraic curve on M. We shall assume
further that each irreducible component of E is non-singular and intersect each
other at only one point at most. In such case, we shall say that E is of normal
crossing type.

For a curve E of normal crossing type, we represent each irreducible com-
ponent of E by a vertex and join the vertices if and only if the corresponding

1 We implemented a program to get the list of the é-sequences and the corresponding dual
graphs I'(E) of the curves with one place at infinity with any given genus. We thus confirmed
the classification table given by Nakazawa in [7].



irreducible components intersect each other. We associate to each vertices an
integer, called weight, equal to the self-intersection number of the corresponding
irreducible component on M. The weighted graph thus obtained will be called
the dual graph of E and noted by I'(E). In case the values of the weights are
not in question, the weights may be ommitted in the picture of the dual graphs
bellow.

Lemma 1 Let Fy, ---, E,., E.y1 be the irreducible components of E and as-
sume that the dual graph T'(E) is of the following linear type:

—n1 —nN2 —"Ny
[(E) : oo (n; >2).
E1 EQ ET Er+1

Assume further that there exists a holomorphic function f on a neighborhood
U of Ey UE,U---UE, such that the zero divizor (f) of f on U is written in
the following form.

(f) =D miEi + myp1 By N U.

i=1
Then,
(1) ma, ---, mey1 are all multiple of m;.

(2) Set p; = m;/my, (1 <i<r+1), then (pr41, pr) are coprime each other
and the following continuous fraction expansion holds.

S T

Proof. Since (f) - E; = 0, we have m;y1 =n;m; —m;_q fori =1, ---, r,
where mg = 0. The two assertions of the lemma are the immediate consequences
of these equations.

1.3 Intersection matrix.

Let Ey, E,, ---, Eg be the irreducible components of E and consider the
intersection matrix

Ig = ((Ei - Ej))ij=1,R-
Set Ap = det(—Ig). The following two lemmas can also be obtained easily by
a direct computation.

Lemma 2 The determinant Ag is invariant under the blowing up of the points
on E. Namely, if 7: M1 — M is a blowing up of a point P on E, we have then
A-r—l(E) =Ag.



Lemma 3 Assume that the dual graph T'(E) is of the following type:

—m, —Mp_1 —MM1 —1 —n1 —Ns_1 —Ns

F(E) r O— O - o O - mo--- o 0 (m, > 2, n; > 2)

We have then
Ag = pq — aq — bp.

where p, a, q, b are the natural numbers defined by the continuous fractions
p
A R I

= nl—jnz—j ng — +-— jns

SR

satisfying

(p,a) =1, (¢,;b) =1, 0<a<p, 0<b<yq.

1.4 Compactifications of the affine plane

Assume now that M — E is biregular to C?. In such a case, we shall call the
pair (M, E) an algebraic compactification of C? and E the boundary curve. Let
E,, Es, -+, EgR be the irreducible components of E.

By C.P.Ramanujam[9] and J.A.Morrow[6], (M, E) can be transformed into
the pair (Pz, L) of the complex projective plane P? and a line L on it, by
a finitely many times of blowing ups and downs along the boundary curve.
Therefore, by Lemma 2, Ap = —(L?) = —1, namely

det IE = #+1.
This implies that, for any R number of integers ki, k2, -+, kg, there exists
uniquely determined R integers mi, ms, ---, mpg such that

R
Zml(ElE]):kﬁ (]:17277R)
i=1

Thus, we have

Lemma 4 Let (M, E) be an algebraic compactification of C* such that the

boundary curve E is of normal crossing type and E1, Es, ---, Er be the irre-

ducible components of E. Then, for any R number of integers ki, ko, ---, kg,
R

there exists a divisor D = ZmiEi with support on E, uniquely determined,
i=1
such that
(DEJ):k]7 (.7:17 277R)



In particular, if ki, ks, - - -, kr have a common divisor d, then all the coefficients
my, ms, -+, mpg are multiple of d.

2 Resolution of the Singularity at Infinity

2.1 Canonical Coordinates

Let C be an irreducible affine algebraic curve with one place at infinity defined
by a polynomial equation f(z,y) = 0 in the complex affine plane C? with the
coordnate system z, y. Assume that the degree of f(x,y) is m with respect to x
and n with respect to y. Then, the usual argument about the Newton boundary
shows that f(z,y) is of the following form

Fay) = (aa® + by + 3 ety
qi+pj<pgd
where a #0, b # 0, d =ged(m,n), p=m/d, ¢ =n/d.
In case ¢ = 1 (namely, n = d, m = pn), one can reduce the degree of f(z,y)
with respect z by a coordinate transformation of the following form

T =z, y1=y+cz’

called de Jonguiére type. Therefore, by a finitely many times of de Jonquiere
type coordinate transformations and the exchange of the coordinates z and y,
one can reduce the polynomial f(z,y) to one of the following two cases:

(A)m = 1, n =0 (In this case, C' is a line);
(B) m =pd, n=qd, (p,q) =1, 1 <q<p.

Definition. We shall call the coordinate system z, y satisfying (A) or (B) the
canonical coordinate system for C. An affine plane curve with one place at
infinity having the canonical coordinate system of type (A) will be said
linealizable.

Assumption. We shall assume, from now on to the end of this paper, that
f(z,y) is of type (B) (non-linealizable type).

Now, let us compactify the plane C? to get the projective plane P* with the
inhomogeneous coordinates z, y, and blow up the point at infinity of the curve
C.

At the beginning, the closure C' of C passes through the intersection point
of the z-axis and the oo-line A in P?, by the assumption ¢ < p. Let us denote

q
by Ep the (—1)-curve appeared by the blowing up. The function y_p has the
T



pole of order g on Ey and the zero of order p —q on A. Then, if p — ¢ > ¢ (resp.
p—q<q), C is tangent to Ey (resp. A). Here, we denote the proper image of
A by the same character A.

Let a be the positive integer defined by

aqg <p < (a+1)g.

Incase a=1 (p—q < q), we set E; = A.

In case a > 1, after further a — 1 times of the blowing ups of the point at
infinity of the curve C, we get the compactification of C* with the boundary
curve having the following dual graph:

—a -1 -2 -2 -1

Ey, E A

a
Here, the function y—p has the pole of order ¢ on Ey and the zero of order p—aq
x
on E;. Therefore, the closure of the curve C' passes through the intersection
point of Ey and Ej, and is tangent to E;. Now, blowing down from A the
(—1)-curve on the right hand side of the dual graph a — 1 times successively, we
get the following dual graph:

—a 0
o—o (a >1).
Ey, B

Let (M;, FoUE)) be the compactification of C? thus obtained. The function
f has the poles of order n on Ey and of order m on E;. The indetermination
point of f on M is uniquely the intersection point of Ey and E;.

Remark. Note that, if one continue to blow up the the point at infinity of C
at least twice, then the self-intersection numbers of the proper transforms of Eo
and Ey become both < —2, since C is tangent to E1 on M;.

2.2 Successive Blowing ups

Now, from M, let us blow up the indetermination points of f successively, until
the indetermination points of f disappear. Let M be the surface obtained by
this resolution of the indetermination point of f. We shall continue to denote
by Ey, Ep the proper images of Ey, E; in My respectively, and let E; (2 <
i < R) be the proper image in My of the (—1)-curve appeared by the (i — 1)-
th blowing up. Each E; is a non-singular rational curve and the total curve
Ef = FEyUE,U---UER is of normal crossing type. The last curve Epg is of the
first kind and f is non-constant on Er. Note further that the union

E/'=EyUE,U---UEg



is an exceptional set, since Ey was exceptional in M;.

Let us denote by C the closure of C'in M;. Let Z (resp. P) be the union
of the components of E; on which f = 0 (resp. f = o0). Since f has no
indetermination point on My, the zero C U Z and the pole P of f do not
intersect each other. Let S be the union of the other components of E;. f is
non-constant on each irreducible component of S. We have Er C S.

Suppose that P is not connected. Then, the connected component of P
which does not contain E; must be exceptional, which is absurd. Hence, P is
connected. P coincide with the connected component of Ey — S which contains
Ey and FEj, since f has no indetermination point on Mjy.

In the same way, since Z is contained in the exceptional set E;’', each con-
nected component of Z must have an intersection point with C. Since, on the
other hand, C is of one place at infinity, C' has only one intersection point with
E;. Therefore, Z is connected. Let @ be the intersection point of C' and Ej.

(a) If @ ¢ Z, then Z = (). In this case, S is irreducible, since each irreducible
component of S must intersect C.

(b) If @ € Z, then the zero points of f on S are necessarily on Z. Each
irreducible component of S intersects Z and P which are both connected. Since
the dual graph I'(Ey) of Ey is a tree, this implies that S is irreducible.

Thus, in either case S is irreducible, namely S = Eg.

Proposition 2 (i) Eg is the unique irreducible component of E; on which f
is non-constant. (ii) P is the connected component of Ey — Er which contains
Eo and El.

Corollary 1 At each step of the process to get My from M, the
indetermination point of the function f to be blown up is unique, and is
situated on the (—1)-curve appeared by the preceding blowing up.

By this corollary, we see that the the dual graph I'(Ey) of Ef has the the
following form:

Ey E;, E;, E;

o O ------ o O ------ o R o O ----- o O ----- o

Lo L L

Here, 1 = 71 <41 < jo <ip < --- < Jp < ip < R. Taking into account the
remark at the end of the previous subsection, we have

Corollary 2 E? < -2 fori=0,..,R—1 and E} = —1.



Since P is the connected component of Ey — Er which contains Ey and E,
P is the union of the irreducible components of E situated in the left side to
the vertex Ep in the above dual graph I'(Ey). Let

R
Pf = Z l/iEi
i=0

be the pole divisor of f on M;. We have v; > 0 for E; C P and v; = 0 for the
other components E;. Let k be the degree of f on Er. Then, we have

yv_J 0 (#R)
@) o) ={ ] G2
Assume that & > 1. Then, by Lemma 4, vy, ---,vg are all multiple of

k. Since P is simply connected, there exists a simply connected neighborhood
U = U(P) of P such that U N C = (), and there exists a meromorphic function
F on U such that

f = F*.

This implies that, for any complex number a with sufficiently large |a|, the
curve defined by f = «a is composed of k irreducible components. This is a
contradiction, since f is primitive by Proposition 1. Thus we get k = 1.

Suppose now that E; — P — Er # (0. Let By, Bs, -+, B, be the ireducible
components of B = Ey — P — Eg in the order from the nearest to Er (from
left to right in the above dual graph I'(Ey)). Let (B?) = —f; (1 <i < s) and
set

ni =1, ng =P, nzg=n202 —n1, -+, Nsy1 = Nefs — Ns_1.

Since 3; > 2 for all i, we have ng11 > 2. Consider the divisor N = ZniBi.
=1
We have then
0 (E; # ER, By)
(N-E;) = 1 (E; = ER)
—MNst1 (Ez = Bs)

Since k =11in (O), we get

ww-xe={ L LR

Therefore, by Lemma 4, all the coeflicients of the divisor Py —N must be multiple
of ns41(> 2). This is a contradiction, since the coefficient of Py — N for By is
—1. Therefore, the components By, - -, B, do not exist. Thus, we have

Theorem 1 (i) The degree of f on Eg is equal to 1.
(ii) The vertex corresponding to Eg is situated on an edge of T'(Ey).
(iii) Any irreducible component of Ey except for Er is a pole of f.



For each a € C, denote by C, the curve defined by f = a in C%. We have
then

Corollary 1 For any a € C, the closure Cy of Cy in My intersects Eg
transversely at only one point (so is smooth at the intersection point), and
intersects no other irreducible component E; (i # R). In particular, Cy, is also
irreducible and has one place at infinity.

Corollary 2 If C = Cy is non-singular and of genus g, then any C, except
for a finite number of a’s is of genus g.

In particular, if C' = Cj is non-singular and simply connected, then all the
curves C,, are isomorphic to P'. The mapping f : M ;= P! defines a ruled
surface structure on My, and P = EyUE,U- -+ Eg_; is its singular fiber. There-
fore, P must contain at least one (—1)-curve in its irreducible components. This
is a contradiction, since Ey, Ej, - -+, Er_1 contain no (—1)-curve by Corollary
2 of Proposition 2. Therefore, the case (B) which we assumed at the beginning
of this section does not occur for simply connected non-singular C. Thus, we
get

Corollary 3([1],[11]) If an affine plane curve C is non-singular and simply
connected, then there exists a polynomial coordinate transformation of C*
which maps C to a line in C*.

2.3 Minimal Resolution of the Singularity at Infinity
By Theorem 1 (ii), the dual graph I'(Ef) is of the following form:

Ej, (Eo) E;, E;

I Ejl (El) I Ej I Ejh

Let i1 < i2 < --- < i be the indices of the irreducible components of E
corresponding to the branching vertices of the graph I'(Ey), and jo =0 < j; =
1 < j2 < --- < jn < jny1 = R be the indices corresponding to the edges of
I'(Ey) as above.

Reversing the process of the construction of (My, Ey), one can blow down
successively Er, Er_1, --+, Eo in this order to get the smooth surface M;.
Therefore, we have (E?) = —2, for i, <i < R— 1.



Definition. Let M = M¢ be the surface obtained by the blowing down of Eg,
Eg_1, -+, Ej, 41 from My. We shall denote the images of Ey, Ei, ---, E;, in
Mc newly by the same notations Ey, E1, ---, E;, , and set

E=FEc=E,UE U---UE;, in Mc.

We shall call the pair (M, E) = (M¢, Ec) the compactification of C* obtained
by the minimal resolution of the singularity of C at infinity. Accordingly, the
graph T'(E¢) will be called the dual graph of the minimal resolution of the
singularity of C' at infinity.

Setting

Ly = U E;

ip—1<i<ig

for each 1 < k < h, we shall call Ly (resp. I'(Lg)) the k-th branch of Ec (resp.
of I'(E¢)), where ig = —1. We shall denote i), by T'.

Ej, (Eo) E;, E; E;, (Er)

S

(REr) |
Ej (Eq)

E; I E;

3 (p, q)-sequence and J-sequence

In the followings, we shall denote (M¢, Ec) by (M, E) and the closure of C' in

M by C.

Definition. We shall denote by 6, the order of the pole of f on Ej, for
0 <k < h and call {do, 1, ---, 0n} the d-sequence of C' (or of f).

The purpose of this section is to describe the relationship between the o-
sequence and the weights of I'(E). Note first that we have

(50:71, (51:m,

since we assumed that f(z,y) is of degree m with respect to = and n with respect
to y. For each k (1 < k < h), set the weights of I'(Ly) as follows:

10



—My —Mp—1  —M —ny —MNs-1 —Ns
Ly O sssannns ° O sssannns o—o (k-th branch Ly),

where Ly = the closure of the y-axis and L., = C. Define the positive
integers pg, ak, qx, by such that

(Pr,ar) =1, (qr,b) =1, 0<ar <pg, 0<byp < qy,

by the continuous fractions as follows:

pk/ak:m1—j7712—jm3_..._ jmr
Qk/bk: nl—jnz—j ng — --- — Ins_

Remark. In case there is no vertex between the two branching vertices
corresponding to E;, _, and E;, (k> 1, r =0), we set pr =1, ay = 0.

Definition. We shall call the sequence
(plv ql): (pZa qZ): Ty (phv qh)

the (p, q)-sequence of C' (or of f).

By Lemma 3, we have

. -1 (k=1
Proposition 3 prqr — bppr — arqr = { 1 Ek S 1;

Therefore, (pr, qx) are coprime each other, and if the pair (px, gi) is given,
the pair (ag, br) (0 < ar < pr, 0 < by < q) is determined uniquely by this
equation, so that, by the continuous fraction expansion of Pr and Z—k, the self-

a

k k
intersection numbers of the irreducible components of L; are determined except

for that of E;, .
Note that (E%) = (E} ) = —1. As for the self-intersection numbers of E;, ,
-+, By, _,, one can check easily the following proposition.

11



Proposition 4 Suppose that, for 1 < k < h, the t weights ns_441, ---, ns of
the above dual graph I'(Ly) are equal to —2 and that ng_ # —2. Then,

2 (P > qr)
(Bi_) =19 2+t (p=1)
3+t (otherwise).

Thus, the dual graph I'(E) = I'(E¢) can be determined completely by the
(p, q)-sequence of C.

Now, by Lemma 1,
Proposition 5 The order of the pole of f on E;, is equal to gpdy.

In particular, since dg = n,d; = m, f has the pole of order p;n = g1m on
E;,. Remember that m = pd, n = ¢d, (p,q) = 1 (see (2.1)). We get then
p1q = @1p. Since (p1,q1) = 1 by Proposition 3, this implies

Corollary. (i) pr =p, 1 = ¢, (ii) dpr =01, (iii)q161 = p1do.
Let

T
Pf = Z l/iEi
=0

be the pole divisor of f on M. By Lemma 1, the coefficients v; of E; corre-
sponding to the vertices between Eqy (resp. E;) and Ej;,, including E;,, are all
multiple of g (resp. d1). Further, applying

for each E; corresponding to the vertices between E;, and E;, successively, all
the coefficients v; of these E;, including E;,, are linear combinations of dg and ;
with integer coefficients. Since all the coeflicients of E; between E;, and Ej, are
multiple of 2, the coefficients of E; between E;, and E;, are linear combinations
of &g, 01, do with integer coefficients. Continuing in this way, we see that

Proposition 6 qyd, € Zog + Z61 + -+ Zdp_1.

Now, setting o = i1 (2 < k < h), let us denote by M, the surface obtained
by the (o — 1)-th blowing up in the process to get M from M;. We may say
that M, is the surface obtained by the blowing down of Ep, Tp_1, ..., Eyq1
successively from M. Let 7, : M — M, be the mapping obtained by the
composition of these blowing downs. We shall denote the images of C', E,
in M, by U(J), EY) | respectively. ) intersects ES) at the point Q, =
To(Er U+ -E,11). Let di be the intersection number of U(U) and ESU) in
M,. Since M, is non-singular, there exists a holomorphic function ¢, on a

12



neighborhood U, of 7,1(Q,) = E, 41 U---UEp in M which has the zero divisor
of the form:

T
((Pa) = Eo’ N Ua + Z ,quz
i=oc—+1
We have then p;, = p;,_, and, by lemma 1, p;, = qap;, fora =k,k+1,---,h,
where we set yu, = 1. This implies pur = pi, = qxqx+1 - - ¢n. Hence, we have
1 (k=h+1)

_ Ale) (o)y _ _
dp =(C"'-FE = =
k= )= b {Qka+1"'Qh (k< h).

Let P;‘T) be the pole divisor of f on M,. We have then

) plo) _ ()
C” ~P7 =Y uE",

<o

b= (@ B = Y n(E - B,

i<o

Since each v; is a linear combination of dg, d1, - -+, dx—1 With integer coefficients,
we have
dy € Zoo+ Z01 + -+ Zbp—1.

Hence, di is a multiple of gcd{dg,d1, -, dk—1}. On the other hand, the coeffi-
cients vg, - -+, Vs Of PJE”) are the solutions of the simultaneous linear equations

S w(BE ) :{ 0 (j<o)

< dk (j = 0’).
Therefore, by Lemma 4, vy, ---, v, are all multiple of di. In particular,
do, 01, -+, Op_1 are also multiple of di. Thus, dy is the greatest common
divisor of dg, &1, ---, dr_1. Consequently, we have

Proposition 7 Let d, (1 < k < h+ 1) be the greatest common divisor of
do, 01, -+, O_1. We have then dn+1 =1 and, for k < h,

Ay = QeQr+1 " Ghs

or equivalently
qr = dp/dp41-

Remark. These relations hold for k=1 also, since d; = o = n, ds = d and
@1 =q=n/d.

13



Let us consider the holomorphic function ¢, on a neighborhood U, of E,11U
---UEy defined in the above proof of Proposition 7 (o = ix—1,2 < k < h). Then,
P = <pg’°f takes a pole of order g_10x—1 — 0. on E;, _,, since f takes a pole of
order ¢qr_10x_1 on it.

On the other hand, ¢, takes a zero of order g on E;, , while f takes a pole
of order gd0;. Hence, ® = ¢?*f is either a non-constant function or a non-
zero constant (# oo) on E;, . If one blow down Ey,Ep_1,---, E;, 41, the zero

curve U(ik) of ® intersects Ez(;:k) with the multiplicity dg+1 = Qrr1Qrr2- - qn.
Therefore @ is non-constnt and of degree di+1 on E;, . Hence, the order of the
pole of ® on E;, , is dyp4+1pk. Consequently, we obtain

Proposition 8 di11pr = qe—10k—1 — 0 (2 < k < h).

Thus, the (p, ¢)-sequence and the dual graph I'( E) are determined completely
by the d-sequence of f. Let us summarize here the results obtained so far about
the d-sequence and (p, g)-sequence.

Proposition 9 Let C' : f =0 be a non-linearizable affine plane curve with one
place at infinity. Let dg, 01, ---, On be the d-sequence of C, {(pk,qr)} be the
(p, q)-sequence of C and set dj, = gcd{do,-+-,0k—1} (1 <k < h+1). We have
then, for 1 <k <h,

(1) gr = dp/dpy1, dry1 =1,

| h (k=1)
@) divrpr = { Q101 — 0 (2< k< h),

(3) qrox € Zog + Z01 + -+ + Z by 1.

Further, the dual graph T'(Ec) of the minimal resolution of the singularity of
C at infinity is determined by the §-sequence.

4 Canonical Divisor
The holomorphic 2-form w = dz A dy in C? extends to a meromorphic 2-form
on M. The canonical divisor K = (w) has the support on E. Let g be the genus

of the curve C, : f = a for generic a € C. If C is non-singular, g is equal to
the genus of C' by Theorem 1. Let

T
Pf = Z l/iEi
i=0
be the pole divisor of f on M. Taking into account
A o) 0 (0Ki<T-1)
rrm)=C B ={ ] U35

14



we get, by the adjunction formula,

29—2 = (K-0)+ ()
= (K-P;)+(C-Py)
= (K-Pf)+vr
— ((K+E)-Py)— (Ex-P;)+vr

According as E; corresponds either the branch point, edge, or other point in the
dual graph T'(E), we can calculate the value of (K + E) - E; as follows:

1 (branch)
(K+E)-E; =< —1 (edge)
0  (others).
Hence
2-2 = il—l/g—yl+2mk Vi) — Vi, +vr —1

= il_VO_V1+§:Vlk V]k

h
= pgd—pd—qd -1+ &klq — 1).
k=2
Thus, we have
h
Theorem 2 29— 1=d{(p—-1)(¢g—1) -1} + Z(sk(qk —1).
k=2

Since the right hand side of this last equation is positive, we have g > 0. We
get in this way another proof to the Corollary 3 of Theorem 1.

5 Approximate roots

Multiplying f(x,y) by a non-zero constant, if necessary, we may assume that
f(z,y) is monic (of degree n) with respect to y. For the divisors d; (= n), d»,

n
— (k=1,-,h+1).
(k=1 et )

Then, there exists, for each k£ (1 < k < h 4 1), a pair of polynomials g (z,y),

-, dp, dp+1(= 1) of n defined in Proposition 7, set ny =
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monic and of degree ny with respect to y, and ¢ (z,y) of degree < n —ny with
respect to y, uniquely determined by the folowing condition:

f=gP + .

One can check the existence and the uniqueness of this pair (g, %) by the
termwise comparison of the both side of the last equation. We shall call g (z,y)
the k-th approximate root of f. We have g1 = y and gp41 = f by definition.
From the uniqueness of the approximate roots, it follows that g is also the k-th
approximate root of g; for any j with k¥ < j < h 4+ 1. The sequence

go=%, g1 =Y, g2, ', Gh, gh+1:f

will be called the g-sequence of f. In the followings, we shall denote by C} the
curve defined by gi(z,y) = 0 in C*. We have Cy = y-axis, C; = z-axis and
C = Ch41 by definition.

Theorem 3 Fach Cj, (k < h) is also with one place at infinity. Further, its
closure C, in M intersects transversely Ej;, , and does not intersect other irre-
ducible components of E.

Before giving the proof to this theorem, let us prepare two lemmas.

Lemma 5 Letcy, ¢z, -, Co be a non-zero complex numbers, d an integer, and
set

«

p(t) = [Tt - c)?.

i=1

Then, ¢(t) — ¢(0) takes a zeros of order < a at t = 0.

Lemma 6 Let a, b, e be complex analytic curves on a non-singular complex
surface W such that a and b have no common irreducible component with e,
anb=10 and e is compact. Assume that aUe (resp. bUe) be the zero set of a
holomorphic function u (resp. v) on W. Let

T s t
o=Ua =0t = U
=1 j=1 k=1

be the decompositions into the irreducible components, and let

T t
(W) = piai + Y mye,
=1 k=1
s t
(U) = Zl/jbj +an€k
j=1 k=1
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be the zero divisor of u, v respectively. Finaly, let oy (resp. (B;) be the degree of
the zero divisor of v (resp. u) restricted to a; (resp. b;). We have then,

(- (0) = E_jua - iujﬁj.
Tn fact, since a; - b; = 0, (u) - ex = 0, (v) - ep = 0,
(- () = (Z i + émkew @)
- (Z i) - ()
- Z:u( @)

r
= E i Q.
i=1

In the same way, we have ((u) - (v)) = Z v;f;.
j=1

Proof of Theorem 8 It is sufficient to prove it for 2 < k < h. Set 0 = j, — 1.
In the case (E} ) < —3, we have 0 = ix_1. In the other case (E} )= -2,
E, is the component with the self-intersection number < —3 on L; nearest to

E;,_, on the dual graph I'(E). (See the figure below.)

Let M, be the surface obtained by the (¢ — 1)-th blowing up in the process
to get M from M;. We may say that M, is the surface obtained by the blowing
down of Ep, Ep_1, ..., Ey41 successively from M. We shall denote the images

of C, C}, E; in M, by U(J), U(ka), E(J), respectively. Let @) be the intersection

k2

point of U(J) and ES”). Note that we have

(6(0) 'E((ra)) =dy,

17



and O is tangent to E((,J), since (E,*) < —3.

Now, suppose that UE:) passes through the point ). Let P;”) = Z ,uiEi(J)
i=1
be the pole divisor of x on M,. We have u; > 0 for 1 <i < 0. We have
nr = the y-degree of the function g
= the intersection number of C} and the line z = const.

= the degree of  on Cy
_ ( (o) P(a Z Mz ) . B o’))

On the other hand, as one can check it easily using Lemma 1, the coefficient
ls, the order of the pole of ¢ on E,, is equal to ¢1 - g2 - - - qx—1 = ni. Hence, we

have ( )
—(a)‘ (o)y 0 1<i<o-1
while (Ck . U)) = 0, since g is monic. Thus, Cj has one place at infinity.

(o

Since Ck intersects Eo ) transversely at @, Ci. intersects E,11 = Ej, tran-

seversely at the regular point of F in M. Thus, if one shows that 65:) passes
through the point @, the proof of the Theorem 3 will be accomplished.

Suppose that 65:) does not pass through the point ). Consider the rational
function
dk ¢k

<I>—T—1—T

on M,. ® has no zero in U — E{”) NU for a small neighborhood U of Q. Assume
that @ is an indetermination point of ®. Then, there must be a zero curve of ®
which passes through Q. So, ® = 0 on EY”. Set A = B\ UE" U.-.UE!",.
Since A(?) is exceptional and A(@) QU(J) =, ® has no pole on A(?). Therefore,
® must be constant (= 0) on A(”). But, since deg, ¥ < n — ng, we have

Yr/f =0 on E(()J), so that ® = 1 on E(()J). This is a contradiction. Hence, Q is
not an indetermination point of ®.

Now, blow up the indetermination points of ® until the indetermination
points of ® disappear. Let M be the surface thus obtained. We shall denote by

C, Cr, Ej, etc. the proper images in M of U(J), Uﬁf), E](J), etc. respectively.
In M, we can write the divisor of ® as follows:

((I)) = dkék - é + ZV]‘E]‘,

Jj=0

18



namely,

é ~ dkék + ZV]'E]',

=0

where Ey, Ey, - o E, are the proper images of Eéa), Efa), -+, B respectively,
and E;14, ---, E; are the curves appeared by the blowing ups. Since @ is not
an indetermination point, we have

<é-a>={ R

Hence, Z vi(Ej - (0 < i < 7) are all multiple of di, so that, by Lemma 4,

all the coefﬁments v; are multiple of dj,.

Now, if the pole set P of ® on E is not connected, then one of its connected
component must be included in A. But this is a contradiction, since C N A =
and A is exceptional. Therefore, P is connected.

Let {EN',\}AGA be the irreducible components of E on which & is non-constant.
Take one Ey (A € A). Since the dual graph of E is a tree and P is connected,
® has the pole on Ey at only one point, say a. Let By be the connected
component of the closure of E - EN')\ in M which contains Ey. Then, ® =1 on
By, since ® is holomorphic in a neighborhood of By and ® =1 on E(U). Let
b be the intersection point of By and E), and take a coordinate functlon t of
E\ = P! : |t| < oo such that t(a) = oo and t(b) = 0. Since all the v; are
multiple of dj, we can write p = ‘I>|EA as follows:

N

p(t) = Tt — o).

i=1
By Lemma 5, the number of the zeros of ¢(t) — 1 (= —x/f) other than ¢t = 0
is Z Ct)\(dk — 1)

Let ]Sx = Z,uiEi(J) be the pole divisor of x on M and Zq> the zero divisor
=0
of ®. The support of Zg does not intersect By. We have, by Lemma 6,

(P, -di,Cy) = (P Zs)

Z padra,

AEA

so that

g = deg, (gx) = (P - Ch) = Y maun.
AeA
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In the same way, let X be the curve defined by ¢4, = 0 in C? and X, its closure
in M. We have then, by Lemma 6,

deg, (1hx) = (Pp - p) > Z paax(dy — 1).
AeA

Hence,
deg, (¥r) > ni(dr, — 1) = n — ng.

This is contrary to the assumption deg,(1r) < n — n;. Hence, 6;0) passes
through the point @, and theorem 3 is proved.

Corollary. Each g, (0 < k < h) has the pole of order §, on Ey = E;, .

Infact, let Py (resp. P,,) be the pole divisor of f (resp. gi) on M. Then,
we have, by Theorem 3,

o = (Pr-Ch)
= (C-Cu)
= (C i ng)
= the order of the pole of g on Er.

6 Semigroup Critrion

We shall continue to use the same notations as in the previous sections.

Lemma 7 For any integer k (1 < k < h) and any integer A, the sequence of
integers {ao, a1, - -+, ag} satisfying

A= gy + a1 + -+ + ardy
and 0 < a; < q; for 1 <i <k is unique, if it does exists.

In fact, assume that there exist two sequences {«;}, {4} with 0 < «;, 3; <
q; (1 <i < k) satisfying

k k
(1) D b= Bid;.
=0 =0

Then, setting §; = 6;/dg11, we have

k—1
Z(ai = Bi)di = (Br — ar)op.
=0
Here, &9, -+, 0)—1 and & are mutually coprime, since dj41 = ged{do, -+, 01 }-
Therefore, 8, — aj must be a multiple of ged{do, -, dr—1} = di/dk+1 = q-
Since 0 < ag, Bk < g, this implies ar = (. Repeating the same argument,
we get a1 = Br_1, -+, a1 = P, and finally, ap = By by the equation (1).
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Proposition 10 For each k (1 < k < h), qidx is a linear combination of do,
01, + -+, Op_1 with non-negative integer coefficients, namely

(2) qror € Nog+ N6y + -+ + Nogp_1.

Proof. We have ¢16; = pdg by the corollary to Proposition 5. Therefore, it
is sufficient to prove (2) for k > 2. Set o = iy, and let us consider the surface M,
obtained by the (o —1)-th blowing up in the process to get M from M;. We may
say that M, is the surface obtained by the blowing down of Ly4+1, Lp, ..., Ligy1
successively from M. Let 7, : M — M, be the contraction mapping. As in
the previous sections, let us denote the proper images of C, Cy, E; in M, by

U(J), 62”), Ei(a) respectively. By Theorem 3, ﬁﬁfjl intersects transversely E((,J)
at the same point @ = 7, (Lg41 U---U Lp41) as U(J). Hence, the functions f
and gg+1 on M, have the same indetermination point @ € ES,”). Let

(@ N~ 1) plo) N (o)
P =% uE”, Py =3 ik
1=0 1=0

be the pole divisor of f and gx,; on M, respectively. Let dg, 01, - - -, 0 be the
order of the pole of gx11 on Ej, (= Ey), Ej, (= E1), -+, Ej,. We have 0y = 7,
81 = vj,, -+, 6 = vj,. The coefficients v;, 7; (i = 0,1, --,0) are the solutions
of the following equations:

J

§=0
d o o) — 0 Z g
S5 = {27
=0 '
Hence, by Lemma 4, we have v; = dj417; for all i =0,1,---,0. In particular,

6i =0i-dry1, (i=0,1,---k).
Therefore, in order to prove (2), it is sufficient to prove

(3) qk5k€N50+N(§1+"'+Ngk_1.

By Theorem 3, UE:) intersects E](:) transversely and does not intersects

other components EZ-(J) (i # jx). We have

o = (Pg(:ll'agca))

—(o)  =(o)
= (Ck+1 'Ck )

_(‘7) o
= (Ck+1 - P ))-
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This implies that gj has the pole of order §; on E,(,J). On the other hand, by

Lemma 1, gx,1 has the pole of order gd; on EL). Hence, E?) is neither the
Gre+1
g

Q@ and ®(Q) = 0. Therefore, ® is not constant on E,(,J).
Now, set ¢ = gr+1 — gi*. Then,
Y
= ¢ -1
k

is also a non-constant function on ESJ). Therefore, v has also the pole of order

qrOr on EL(TU). On the other hand, since

zero nor the pole of & = Further, @ is holomorphic in a neighborhood of

deg, (¢) < ngt1 = nkqr, nx = deg,(gx),

qr—1

by the division of 1) by g;* ", we get

Y=gl +

with deg, (c1) < nx, deg, (¥1) < ni(gr—1). Dividing ;1 by g* ™" successively
fori=2,---,qx — 1, we get

Yio1 = cigit ™" + 1,

where deg, (c1) < ny, deg, (i) < ny(gr — ). Thus, setting cq, = 9y, 1, we get

dk
— dk —?
P = § Cig;. .
i=1
Here, we have

deg,(ci) <nk =nk-1qk—1, nk-1 =deg,(gr-1).
T : gk—1—1  qr—1—2
In the same way, dividing c¢; and its rests by g,"" *, 95— ~, ---, gr—1 succes-

sively, we get
drk—1

¢ = Z ciigrt
j=1
with degy(cij) < ng_1. Thus, we have

qr 9k—1

=" gl igi .

i=1 j=1

Repeating this procedure, we obtain

— [e2RpNe ) g
1/)— E Caras---ard1 92 gk ’

a1<q1,a2<q2, 0k <{k
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where deg, (Cayas--a)) = 0, since g1 = y. Substituting finally go = z, we can
write v as follows:

— Qp Q1 (697}
Y= E Capar-ar90 91 " "9k >
ap<o0,01 <q1, 7k <gk

where cqgay--ap are constants.
Qg Q1

The order of the pole of each term gg°gi™ - - gp* on E) is
(4) 040(50 +041(51 +"'+Oék(5k.

Now, by Lemma 7, these values are different each other. Hence, the order of
the pole of ¥ on EY) coincide with one of the values of (4). Thus, we have

qror = agdg + 161 + -+ - + by

for some sequence of non-negative integers ag, aq, - - -, ap satisfying 0 < a; < ¢;
for i =1, -, k. Assume here that ay # 0. Then, we have

aoplo + a101 + -+ ap_10p_1 + (Qk — ak)dk =0

with 0 < qx — ax < qr. This contradicts Lemma 7. Hence, we have ay = 0.
Thus, we obtain

qro0r = apdp + @10y + -+ -+ 16k 1.

Q.E.D.

By Proposition 9 and Proposition 10, we obtain the following theorem which
can be regarded as an algebrico-geometric version of the so-called semi-group
theorem due to Abhyankar and Moh[2] for the curves with one place at infinity
in C*.

Theorem 4 Let C be an affine plane curve with one place at infinity in C?,
0o, 01, -+, Op the d-sequence of C and (p1,q1), -+, (Pr,qn) the (p, q)-sequence
of C defined at the beginning of the section 3. Set dy, = gcd{dg,---,0k—1} for
1<k <h+1. Then, we have, for 1 < k < h,

(1) gr = dp/dk41, dpyr =1,

) (k=1)
@) diapr = { Q101 — 0 (2< k< h),

(3) qror € No+ N6y + --- Ny _1.

Further, the dual graph T'(E¢) of the minimal resolution of the singularity of
C' at infinity is determined by the §-sequence.
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The next theorem gives the inverse of Theorem 4 in some sense.

Theorem 5 (Sathaye-Stenerson[10]) For a sequence of h+ 1 natural num-
bers 6o, 01, 02, -++, On (h > 1), define dy, do, -, dpy1 by

dy, = ged{do, -+, 0k—1}

and set qr, = di,/dr+1 (1 < k < h). Suppose that the following three conditions
are satisfied:

(1) dnyr =1,
(2) 0 < qr—16k—1 (2 <k < h),
(8) qrdx, € Noo+ N&y +---+ Nop—1 (1 <k <h).

Then, {bo, 01, 02, ---, On} is the 0-sequence of an affine plane curve with
one place at infinity in C*.

Proof We shall prove theorem 5 by the induction on h. In the case h =1,
setting dp = ¢q, 0; = p, we have (p, ¢) = do = 1. Hence, as one sees it easily,
the curve 2P + y? = 0 has one place at infinity and {dg, d1} is its d-sequence.

Now, let us consider the case h > 2. Set &; = Or/dp for 0 < k < h—1, and
dy, = dy,/dy, for 1 < k < h. We have

Jk = ng{507517 Ty Sh—l} and dre = de/deJrl

for 1 < k < h — 1. Further, the sequence {50,51, e ,Sh,l} satisfies the same
properties (1), (2), (3) for h = h — 1. Therefore, by the induction hypothesis,
there exists an affine plane curve Cj, with one place at infinity which has {4}
as its d-sequence. Let f be the defining polynomial of C), and, taking the
canonical coordinate system z,y for C}, (see (2.1)),let go =z, 1 =y, - -+, gnh—1,
gn = f be its g-sequence. Let (M, E) = (Mc,,Ec,) be the compactification
of C? obtained by the minimal resolution of the singularity of C} at infinity

(see (2.3)). The closure Cy of the curve Ch g =00 <k <h—1)in M
passes through the irreducible component E;, of E corresponding to the k-th
edge of the dual graph I'(E), and C}, passes through a point @ of E;, _,, the

curve appeared by the last blowing up. Now, set

Ph = (qh—10n—1 — 0n).

Since qn, = dp, = ged{do,---,0n—1} and (qn,dn) = dpy1 = 1, then we have
(Ph,qn) = 1. Therefore, we can take ap, by (0 < ap < pp, 0 < by < gp) such
that

Prqn — bnpn — angn = 1.

Define the integers m;,n; > 2 by the following continuous fraction expansions:
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qh/bh: nl—jnz—j ng — ---— Ins'

Then, we can blow up the point () and the infinitely near points successively,
in such a way that we get the A-th branch L, of the form:

Ly 1 —o——0--- o O -m-mmm s o o

Let M be the surface thus obtained and E the total image of E in M. Let
E;, C}, the proper images of E;, Cy in M. Note that we can do these blowing
up in such a way that the closure C', passes through the component E;, . (Itis
sufficient to take the center of the blowing up on Ej, to get E;, 41 outside the
intersection of the closure of C}, with Ej, .)

According to the Corollary to Theorem 3, each g (0 < k < h — 1) takes the
pole of order 5k on E;, ., so that it takes the pole of order é; on E;, , while gp
takes the pole of order

an(qh—10n-1) — Ph = qh—10n—1 — Dr = Oh

on Elh .
Now, by the condition (3), there exists a sequence of non-negative integers
«; satisfying
qnon = oo + 101 + -+ - + ap—10p—1,

where we may assume 0 < a; < ¢; (1 <14 < h—1), applying the condition (3) for
k=h—1h—2,---,1 successively, if it is neccessary. Consider the polynomial

h—1
fle, y) =g =[] o
1=0

h—1
and the curve C : f(z,y) = 0 in C°. Since gi* and H g;"* have the same order
i=0

(say gndp) of the poles on E;, , the function

h—1

_ . f
o=g, " [[of =1- %
i=0 I

is either a non-constant function or a non-zero constant on E;, .
Let A (resp.B) be the closure of the connected component of E — E;, which
contains Ey (resp.Ej, ). Since A is exceptional and ANCy, = @), ® is holomorphic
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on A and the pole of ® is contained in C', U B. On the other hand,

h—1 h—1 h—1
deg, ([T o5 <D aini =D aitic1- a1 < qngn -+ q1 = deg, (gi").
=0 =1 =1

Hence, Ey is a zero of @, so that & = 0 on A. Therefore, ® is non-constant on
E;, , and takes the pole on the irreducible component B; of B which intersects
E;, . The pole divisor of ® must be of the form

Py = qCh+ Y wiBi, (ui > 0),

i=1

where By, By, -+, Bs are the irreducible components of B. By Lemma 1, we
have gnp1 = gn, so that gy = 1. Thus, @ is a rational function of degree 1 on
E;, . Since the curve @ =1 coincide with C, we obtain

Thus, the curve C has one place at infinity.

Now, since ® = 0 on A, f takes the same order of the pole as gi* on each
irreducible component of A. In particular, f has the pole of order ¢gnd, = 0k
on each Ej, (0 <k < h—1). On the other hand, since ® =1 — f/gi* is non-
constant on E;, , f has the pole of the same order ¢,d; as gzh on E;, . Hence,
f has the pole of order J;, on E;, by Lemma 1. Thus, {d, 61, ---, dn} is the
d-sequence of the curve C : f = 0 with one place at infinity.

Q.E.D.
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