
On-Line Recognition of Mathematical

Expressions Using Automatic Rewriting Method

T. Kanahori1, K. Tabata1, W. Cong2, F.Tamari2, and M. Suzuki1

1 Graduate School of Mathematics, Kyushu University 36,
Fukuoka, 812–8581 Japan

suzuki@math.kyushu-u.ac.jp
2 Fukuoka University of Education

729 Akama, Munakata-shi, Fukuoka, 811–41 Japan,
tamari@fukuoka-edu.ac.jp

Abstract. This paper describes our system of on-line recognition of
mathematical expressions. Users can input mathematical expressions by
handwriting. As soon as a character is written, it is rewritten by neat
strokes in an appropriate position and size automatically. This Automatic
Rewriting Method improves the accuracy of the structure analysis of the
written mathematical expressions. The written mathematical expressions
can be output into files in the notation of LATEX and MathML. By this
handwriting interface, the system realizes a very easy intuitive methods
to input mathematical expressions into computer.

1 Introduction

Recently, the use of computer and network is becoming widely spread. However,
it is true that the user interfaces of current computer systems are not convenient
to input mathematical expressions (see [1], [2] and [3]). For example, the widely
used data format TEX requires some learning to master the notations, and it
is not easy to understand the meaning of the written expressions by the TEX
source at a glance. To realize easier treatment of mathematical expressions of
various formats, we are developing a new handwriting interface to input math-
ematical expressions into computer. Users can input mathematical expressions
by handwriting in the handwriting area, and edit the input expressions on the
display area. The edited mathematical expressions can be output into a file in
the notation of LATEX or MathML.

Presently, this system can recognize all the alphanumeric characters, almost
all Greek letters, and other symbols frequently used in mathematical expressions,
and can analyze the expressions used in high school mathematics or in the first
course of university mathematics, including fractions, square roots, subscripts,
superscripts, integrals, limits, summations and the function names ‘lim’, ‘log’,
‘cos’, ‘sin’, ‘tan’, etc. The matrices are excluded at the moment. The structure
of mathematical expressions may have the nested structures. However, deeply
nested structure leads to the increase of small size characters and naturally
increases the errors of the recognition.

2 T. Kanahori et al.

In this paper, we describe our method of the recognition of handwritten
characters and the algorithms of Automatic Rewriting Method, and report the
performance of our experimental system.

2 Outline of The Experimental System

The main window of the system consists of two areas (see Figure 1). The upper
area is the display area and the lower is the handwriting area. In the handwriting
area, users write mathematical expressions
by using a mouse, a data tablet or a pen
display.
As soon as a character is written, it is rec-

ognized and rewritten by neat strokes in an
appropriate size and position automatically.
Pushing the button 〈OK〉, the expression is
analyzed, and the result is displayed in type
setting form in the display area.
In the display area, we can edit mathe-

matical expressions using ordinary editing
operations: selection, cut, copy, paste and
delete. The users can save them into a file
in the notations of LATEX or MathML. Fig. 1. The experimental system

3 Character Recognition

In this section, we describe our method of character recognition in our handwrit-
ing interface. We implemented two different methods of character recognition,
to get recognition results by voting. One of the recognition methods uses the
distribution of the 8-direction elements of the strokes on 3×5 meshes of the
he character rectangle (Section 3.1). The other method uses the matching of
segmented stroke sequence (Section 3.2). Each of the two recognition methods
returns three ordered candidates with costs. The voting cost of the candidate is
taken to be the ratio of its cost to the third candidate’s, and the final recognition
results is determined by the ascending order of the sum of their two voting costs
of the two recognition methods.

The characters and symbols recognized in this system include all the al-
phanumeric characters, some Greek letters, and other symbols frequently used
in mathematical expressions (see [3]).

3.1 Direction Element Feature

To extract this feature, we first take a normalized coordinate system which
squarely converts the bounding rectangle of a character, and subdivide the
bounding rectangle into 3 × 5 meshes (3 meshes in the horizontal direction,
and 5 meshes in the vertical direction).

Lecture Notes in Computer Science 3

Let d0, d1, d2, . . . , d7 be the directions taken from the x-axial direction to the
backing every 45 degree (see Figure 2). Given a segment of length L of direction
between di, di+1 making the angle θ1, θ2 respectively with them, the contribution
of the segment to the directions di, di+1 are defined by

Li =
Lθ2

θ1 + θ2
, Li+1 =

Lθ1

θ1 + θ2
,

respectively, where L8 = L0 and d8 = d0.
Li is called the direction component of the
segment to d.
Calculating the direction components of

each segment which constitutes the strokes

Fig. 2. The direction component

of a character, these components are distributed into the 3 × 5 meshes defined
above. Thus we obtain a feature vector of dimension 3× 5× 8 = 120, which we
call the direction element feature([4]). Since we take a coarse mesh (3× 5), this
feature vector has a robust property for the distortion of the character shape.

3.2 Matching of Segmented Stroke Sequence

If a written stoke has some small loops, they are modified to cusps (see Figure
3). After this modification, the written stroke is segmented at extreme points on
the vertical coordinate. The stroke is segmented at cusp points again (see Figure
3). Segment strokes which can be regarded as a straight line are classified into 8
patterns (8 directions in Figure 2), and segment strokes which are winding down
strokes are classified into 10 patterns (see Figure 4). Segment strokes which are
winding upstrokes are also classified similarly. Hence, there are 8 + 10× 2 = 28
patterns of segment strokes. The character recognition is done by the matching
of the sequences of segment stroke patterns thus obtained.

To calculate the recognition cost, the following features are used: segment
strokes’ aspect ratios, the positions of their bounding rectangles, the directions
of their original vectors vo and terminal vectors vt (see Figure 5). The cost of
a written stroke for a candidate is determined by the sum of the differences of
these features between the corresponding segment strokes.

Fig. 3. Modification and Segmentation Fig. 4. Downstrokes Fig. 5. vo, vt

4 Automatic Rewriting Method

The distortion of input characters and the turbulence of the positions or the
scales of characters usually cause serious difficulties in the structure analysis of

4 T. Kanahori et al.

mathematical expressions, in which the positions and the scales of the characters
have special meanings. An error of a character recognition or of the segmentation
of the strokes into character units leads sometimes to a fatal error of the structure
analysis of the mathematical expression. The labors for the correction of this kind
of errors disturb seriously the smooth input of mathematical expressions.

Our automatic rewriting method is introduced in order to overcome this
difficulty. In this method, whenever the pen is up, the strokes are recognized.
Each recognized character is rewritten by neat strokes in an appropriate size and
position automatically (see Figure 1). By this rewriting, the user can identify
each recognition error immediately when it occurs, and can correct it easily.

In this section, we shall explain the algorithms to determine characters and
to select appropriate positions and sizes of the determinate characters.

4.1 Determination of Characters

When a stroke is written, it is necessary to decide whether a character is fully
written up or not at each time the pen is up in our method. To explain the De-
termination Algorithm for this operation, we classify the results of the character
recognition into two groups. One is the group of characters, named extendable
characters, which can be extended to other character by adding some strokes.
For example, ‘F’ is extendable to ‘E’, ‘C’ to ‘G’ or ‘d’, and ‘=’ to ‘�=’.

The other is the group of characters, named unextendable characters, which
can not be extended to any other character by adding strokes. For example, ‘E’
and ‘G’ are unextendable.

Each extendable character has extendable areas, where a next stroke is ex-
pected to be pushed down (see Figure 6). The determination algorithm of char-
acter unit proceeds as follows:

1. Let S be empty. (S means the sequence of untreated strokes.)
2. When a pen is up, add the written stroke to S
3. Let R be the recognition result considering S as one character.
4. If R is unextendable, then output R as the determined character of the
strokes S and go to the step 1.

5. Wait for the next stroke N to be written. If N started from R’s extendable
area within 2 seconds, then go to step 2, else output R as the determined
character of the strokes S and go to step 1.

Fig. 6. Extendable areas

Fig. 7. Decision of Position and Sizes

Lecture Notes in Computer Science 5

4.2 Determination of Positions and Sizes of Characters

A structure of mathematical expression can be represented by a tree structure.
Corresponding to it, the notion of parent (or child) character is introduced. For
the expression xa + yb’, for example, ‘x’ and y are the parent characters of
‘a’ and b with the relation ‘superscript’, and x is also the parent of ‘+’ with
the relation ‘same line’. The position and the size of an input character are
determined together with its parent character.

Let C be an input character, and D be the candidate of the parent character
of C. Then, the relation point P (C,D) is defined by

P (C,D) := (h/H × 100, d/H × 100),
where h is the normalized size of C, H is the normalized size of D and d is the
distance of the baselines of C and D (see Figure 7). The cost between C and D
on Relation i, ci(C,D), is defined by

ci(C,D) := d(Pi, P (C,D)) (i = 1, 2, 3),

where Relation 1 means that C and D are on the same line, Relation 2 means
that C is either the superscript or the subscript of D, Relation 3 means that
C is either the numerator or the denominator of the fraction on the same line as
D’s, and Pi are ideal relation points onRelation i. In this system, P1 = (100, 0),
P2 = (60, 50) and P3 = (100, 50).

The algorithm to find the parent character M of the new input character C
and to obtain their relation R is as follows:

1. Let M and R be NULL. If C is the first input character in the mathematical
expression, then quit.

2. Let D be the input character just before C, min be a positive number which
is large enough, and set n=0.

3. If D is NULL then quit.
4. If the cost c1(C,D) is small enough, then let M = D and R = Relation 1
and quit.

5. Let m = argmin{k �= n|ck(C,D)}. If cm(C,D) is smaller than min, then let
min = cm(C,D), M = D, and R = Relation m. Let further Relation n
be the relation between D and its parent character, and replace D by the
parent character of D. Go to the step 3.

The size and the position of the input character C is determined by the pair
of its parent character M the relation R thus obtained.

4.3 Structure Analysis of Mathematical Expressions

By our Automatic Rewriting Method, the recognition result of each input charac-
ter and its position and size are corrected by the user, as soon as an error occurs.
Consequently, the structure analysis of the mathematical expression proceeds
with very high accuracy. In practice, no error occurs in the structure analysis
expect for the case where the input rule is ignored intentionally.

6 T. Kanahori et al.

5 Experimental Results

To evaluate the efficiency of Automatic Rewriting Method and the performance
of our recognition engine, the experiments were carried out using thirty writers
who had got their hands in writing mathematical expressions, but never used
our system in the following order:

Experiment 1 First, we explained how to use our system, following the manual
prepared for this experiment (for about 10 minutes for each writer). Then, each
writer wrote the following mathematical expressions (1)∼(7),

(1) ax2 + bx+ c = 0, (2)
s+ t

p+ q
, (3) e−

x2
2 , (4) x =

−b ±√
b2 − 4ac

2a
,

(5)
n∑

i=1

i =
n(n+ 1)

2
, (6) lim

x→0

sinx

x
, (7)

∫ b

a

log xdx,

and we counted the number of times of error correction actions of the writer.
For the correction of character recognition error, the writers are instructed to
switch the recognition result with its next candidate by clicking on the character,
and to delete last one character by pushing the button 〈Delete〉 only if there is
no correct result among the three candidates. On the other hand, for the case
the size or the position of the rewritten character is not appropriate, or the
character segmentation is wrong, the writers are instructed to push first the
button 〈Delete〉. In this way, the error correction actions are classified by their
causes into four groups: 1. order: the first candidate of the character recognition
was not correct, 2. candidate: no correct result was found among the three
candidates, 3. position: the position or the size of the rewritten character was
wrong, 4. segmentation: one character was recognized as several characters.
For each written character, we logged its recognition cost, the distance between
baselines of the character and its rewritten character. We did this process 6 times.
Finally, we reshuffled the above expressions and did the similar experiment as
7th process.

Experiment 2 After Experiment 1, each writer wrote the following expressions
(i)∼(iv), which are more complicated than Experiment 1’s. Then, we counted
and logged in the similar way to Experiment 1. We did this process 3 times.

(i) lim
n→∞

(
1 +

1
n

)n

= e, (ii)
∫ ∞

0

log x

1 + x2
dx, (iii)

∞∑
n=0

(−1)n
(2n+ 1)2

,

(iv)
∫ ∞

0

e−a2x2
dx =

√
π

2|a|
Experiment 3 After Experiment 2, we told each writer to write as fast as
possible each the expressions (i)∼(iv). For each expression, we counted the time
from the first stroke’s beginning until the whole expression exactly written up,
including the time to correct.

Lecture Notes in Computer Science 7

Experiments 1∼3 are intended to evaluate the effects of Automatic Rewriting
Method. After these experiments, we did the following experiment to evaluate
the recognition rate of our recognition engine.

Experiment 4 For the training, each writer wrote all alphabets and numerics
3 times. Then, each writer wrote 20 characters (capital:small:numeric = 8:8:4)
which we had chosen randomly, and the number of recognition errors is counted.
We did this process 5 times, and classified the number of errors into two cases: 1.
the correct result was not the first candidate, but in the first three candidates,
2. the correct result was not in the first three candidates. Moreover, we also
classified lower-case letters into two classes according as the writers had written
in Experiment 1 or 2, or not, and counted the number of errors for each classes.

Figure 8 shows the result of Experiment 1 and 2. In Figure 8, the x-axis means
the process times of the experiment, and the y-axis means ratio of correction
time to the total number of characters. For example, the ratio of the case order
is calculated by (1/N)

∑7
i=1 ei, where ei(i = 1, · · · , 7) is the number of errors

order at the expression (i), and N is the total number of characters in all of
the expressions (1)∼(7).

Figure 8 shows that the numbers of correction except order’s decrease as
the number of writing increases. The order correction increases from 4th time.
This means that the concentration’s slip or the habituation of the writer causes
rough writing. But, the decrease of the other corrections shows that this system
can cope with the ‘rough writing’. Moreover, the position correction (or seg-
mentation) which leads a fatal error of the structure analysis of mathematical
expressions is about 3 times (resp. 4 times) per 100 characters at 7th writing.
Hence, the Automatic Rewriting Method is effective to on-line recognition of
mathematical expressions.

We expected another advantage of Automatic Rewriting Method as below:
The rewritten characters may serve as a model of the feasible character forms
and the size for the recognition, and leads the user to a neater writing style.
However, there was no major difference in the log of the costs and the distances
between baselines from the 1st writing to the 7th in Experimental 1 and 2.
Therefore, we could not see the advantage from this point of view.

Figure 9 shows the result of Experiment 3. It shows that, everyone wrote up
all the expressions (i)∼(iv) between 1.5 minutes and 4 minutes. For 5 experts of
TEX, who had written at least 5 articles of mathematics using TEX, we counted
the times to input the same expressions in the notation of TEX. Then, the fastest
time was about 1.5 minutes, the latest was about 3.5 minutes, and the average
was 1 minute and 58 seconds. This shows that beginners can input complicated
mathematical expressions smoothly with simple training, by using our interface,
as well as inputting of the experts in the notation of TEX.

Table 1 shows the result of Experiment 4. In Table 1, the 1st row shows
the recognition rate of the first candidate and the 2nd row shows the rate in
the first three candidates. The 4th column ‘appear’ (resp. the 5th column ‘not
appear’) means that the rate is for characters which appeared (resp. did not
appear) in Experiment 1 or 2. The 1st rate of ‘appeared’ characters is worst.

8 T. Kanahori et al.

This shows the similar result to Graph 8, ‘rough writing’ by the concentration’
slip or habituation.

Fig. 8. The ratios of correction

Fig. 9. Writing time

capital small numeric appear not appear total

at the first candidate 95.5% 91.7% 94.5% 90.9% 93.4% 93.8%

in three candidates 97.8% 97.1% 97.3% 97.2% 96.6% 97.4%

Table 1. The rates of current result

6 Conclusion

In this paper, we introduced our system of on-line recognition of mathematical
expressions. We proposed Automatic Rewriting Method to improve the accuracy
of the structure analysis of handwritten mathematical expressions and to realize
an easy and prompt correction method of recognition errors. We emphasized
that an easy correction method of the recognition results is extremely important
to realize smooth writing of mathematical expressions. From the experimental
result, In the experiment, we observed the efficiency of our method to input
mathematical expressions by handwriting smoothly with minimum training.

References

1. D. Blostein and A. Grbavec, “Recognition of Mathematical Notation”, Handbook
of Character Recognition and Document Image Analysis, (1997) 557-582.

2. T. Sakurai, Y. Zhao, H. Sugiura and T. Torii, “A Front-end Tool for Mathemat-
ical Computation and Education in a Network Environment”, Proc. 3rd. Asian
Technology Conference in Mathematics, Springer (1998) 197-205.

3. H. Okamura, T. Kanahori, W. Cong, R. Fukuda, F. Tamari and M. Suzuki, “Hand-
writing Interface for Computer Algebra Systems”, Proc. 4th. Asian Technology
Conference in Mathematics, December (1999) 291-300.

4. N. Sun , T. Tabara, H. Aso and M. Kimura, “Printed Character Recognition Using
Directional Element Feature ”, IEIEC J74-D-II, 3, 1991, 330-339 (in Japanese).

