
Mathematical formula recognition using virtual link network

Yuko Eto
Toshiba Corporation e-Solution Company

Suehiro-cho 2-9, Ome, Tokyo, 198-8710, Japan
yuko.eto@toshiba.co.jp

Masakazu Suzuki
Faculty of Mathematics, Kyushu University

Hakozaki 6-10-1, Higashi-ku, Fukuoka, 812-8581 Japan
suzuki@math.kyushu-u.ac.jp

Abstract

In this paper, we propose a new method of recognizing
mathematical formulae. The method is robust against the
recognition errors of characters and the variation of the
printing styles of the documents. The outline is as follows:
we first construct a network with vertices representing the
characters (symbols), linked each other by several edges
with labels and costs representing the possible relations of
the pair of characters. The network has multiple edges with
different labels and costs representing the ambiguity of the
decision of the relation of character pairs.

Then, we output the spanning tree of the network with
minimum cost which corresponds to the recognition result
of the structure of the mathematical formula, using not only
the local costs initially attached to the network but the costs
reflecting global structure of the formula. The advantage of
this method is that local errors of the recognition are recov-
ered automatically by the total cost of the recognition tree.

1 Introduction

In view of digitizing scientific documents, the investiga-
tion of practical and robust methods for recognizing mathe-
matical formulae is currently a subject of growing interest.

Several algorithms for recognizing mathematical formu-
lae have been reported in literature (see [1]). Among them,
the methods proposed by [2], [3] and [4] have the advan-
tage of realistic processing speed. However, in their meth-
ods, the structure analysis proceeds deciding the relation of
each pair of adjacent characters (symbols) in a sequential
order fixed in advance, and a local error of the decision leads
sometimes to a fatal error in the global structure analysis.

The errors in the decision of adjacent character pair rela-
tions are caused, in most cases, by the error of the character
recognition for similar characters with different sizes, and
also by the differences of the relative sizes and positions,
depending on documents, between subscripts/superscripts
and their parent characters, or between alphanumeric char-
acters and other symbols such as parentheses, mathematical
operator symbols, etc.

In this paper, we propose a new method of recognizing
mathematical formulae, robust against the recognition er-
rors of characters and the variation of the printing styles of
the documents, keeping processing speed effectively usable
in OCR softwares.

The outline of our method is as follows: we first con-
struct a network with vertices representing the characters
(symbols), linked each other by several edges with parent-
child orientation, label and cost. The label attached to each
edge represents a possible relation of the character pair
linked by the edge: subscript, superscript or on a same line,
etc. The link is virtual one. Each node has several candi-
dates of character recognition result, and each pair of ad-
jacent nodes may have multiple edges with different labels
and costs representing the possible relations for differnet
pairs of parent candidate and child candidate.

Then, we try to find the spanning tree of the network
corresponding exactly to the recognition result of the math-
ematical formula structure. The search of the appropriate
spanning tree proceeds in two steps. In the first step, we
generate admissible spanning trees of the network with low-
est costs, up to some pre-fixed number of candidates, where
a spanning tree of the network is called admissible, if it has
no apparent contradiction to represent a mathematical for-
mula (Section 4). In the second step, we reevaluate the costs
of the obtained candidate trees in the first step, using not
only the local costs initially attached to the network but the



costs reflecting global structure of the formula, and output
the spanning tree with the minimum reevaluated cost as the
recognition result of the mathematical formula.

The advantage of this method is that local errors of the
recognition are recovered automatically by the total cost of
the recognition tree. We applied the beam search method
which is often used in the dynamic programming in order
to reduce the processing time of the first step. To deter-
mine the initial cost of the network, we used the distribution
maps of relative sizes and positions for each relation types
of parent-child links, obtained by the measurement of the
images samples collected from 32 different mathematical
journals (Section 2).

Figure 1. Network and the correct candidate
of spanning tree

Figure 2. xyz ratio Figure 3. Definition
of H and D

2 Normalized size, normalized center, and
relative position plots

Following [2], we make use of the notions of normalized
size and normalized center of each character, which play
an important role in the estimation of the possibility of the
relations: on a same line, subscript or superscript, etc., for
each pair of adjacent characters.

As it is illustrated in Figure 2, the normalized size is
the total size (NSize) including the ascender part x and the
descender part z, and the normalized center is the center
(NCenter) of the bounding rectangle including the ascender
part and the descender part. They can be evaluated from
the bounding rectangle of a character image using the ra-
tio x : y : z. The average of this ratio measured using the
above mentioned 32 documents was 28 : 51 : 21.

As for the normalized size of operators and symbols, we
define it to be the maximum of the height and the width of
their bounding rectangles.

Using the normalized size and the normalized center, we
can represent the relation of a pair of characters by a point
in a normalized coordinate plane. Given a pair of characters
(parent and child), let h1 (resp. h2) be the normalized size
of the parent (resp. child) character and c1 (resp. c2) be the
vertical coordinate of the normalized center of the parent
(resp. child) character(see Figure 3). Setting

H =
h1

h2
� 1000; D =

c1 � c2

h1
� 1000;

the relative size and position of the character pair is repre-
sented by the plot of the point (H;D) in a coordinate plane,
which we call the normalized coordinate plane. For exam-
ple, the plot of relative position for the pair of characters on
the same line is ideally (1000; 0).

Figure 4 represents the distributions of the plots of rela-
tive positions of the sample character pairs on the same line,
subscript position and superscript position, collected from
the 32 mathematical documents mentioned above, classi-
fied into four groups of character types, where all the al-
phanumeric characters and Greek characters are included in
the class of type “Alphabet”. Figure 4 shows that, in most
cases, it is possible to distinguish the relation of the pair of
characters by calculatingH andD, if the recognition results
of the characters are both correct.

In each distribution map, we defined the strict area and
the wide area enclosing the plots in high density bounded
by polygons, and use them to calculate the cost of the link
in the virtual link network, which will be described in the
next section.

Alphabets-Alphabets Alphabets-Operators

Integrals-Alphabets Big Operators-Alphabets

Figure 4. Distribution map of relative position
plots

3 Virtual link network

In this section, we describe the process to construct the
virtual link network. Each node of the network represents a
character (symbol) in the image. It has the bounding rectan-
gle coordinates and the candidates of the character recogni-
tion result. The network is multi-linked and oriented. Each



edge represents a choice of the candidates in the parent node
and in the child node, as well as the choice of the relation
(Link label) of the chosen candidates.

3.1 Selection of the candidates in nodes

Our character recognition engine returns a maximum of
10 candidates. Each candidate has the value of likeness be-
tween 0 and 100. We make use of the candidates which have
different normalized sizes from the 1st candidate to the 5th
candidate with the likeness greater than 50.

To each candidate of the character recognition, we attach
its normalized size defined in 2. Alphanumeric characters
are classified into four types by their normalized size types
(e.g. “abgf”). There are several similar character pairs
having different normalized size types, which are often or
sometimes mis-recognized, such as “Ss”, “Cc”, “x�”, “r�”,
etc. If one of these uncertain size characters is included in
the candidates, we add the pair character with different size
in the candidate list. In case the character recognition result
is the “reject” or the likeness of the top candidate is lower
than 50, we add the candidate “REJECT” of all the four
types of the normalized sizes in the candidate list.

3.2 Construction of network

The structures of mathematical formulae which we are
going to recognize are described by the links with 9 types of
the labels representing the relations of character pairs, listed
in Table 1, where, for example, the relations of a numerator
(resp. a denominator) to its fractional line are included in
the case of the label “Upper” (resp. “Under”). Each edge

Label Meaning of the label
Horizontal C is the next character of P on a same line
R(L)SupScript C is right (left) superscript of P
R(L)SubScript C is right (left) subscript of P
Upper C is in the upper area of P
Under C is in the under area of P
InRoot C is in the inside area of a root symbol P
InAccent C is under an accent symbol P

Table 1. Labels of the links : Parent character
(P) - Child character (C)

has the parent!child direction and represents a choice of
the candidates in the parent node and child node, as well as
the choice of the relation (Link label) of the chosen candi-
dates. To each edge, a cost representing an uncertainty of
the choice is attached.

We decide the relation of each pair of characters using
distribution maps shown on Figure 4.

In our experience, the numerator/denominator area of a
fraction and the interior area of a root symbol, as well as

the affected area under an accent symbol (such as over line,
etc.), are detected with high accuracy, getting less influence
of the character recognition errors. The most delicate part
of the structure analysis of mathematical formula is the dis-
tinction of the horizontal link and the superscript/subscript
link, which is often disturbed by the error of the character
recognitions and the variation of the printing styles. There-
fore, we shall describe below mainly how to construct hori-
zontal link edges and superscript/subscript link edges of the
network.

For each pair of candidates of nodes corresponding to a
pair of character rectangles to be linked by edges, we first
calculate H and D described in 2. If the point (H;D) is
in the inside of a wide polygon of Figure 4, we link the
pair of nodes by an edge with the label corresponding to the
polygon. If the point (H;D) is in the strict area limited by
the smaller polygon inside, we attach a lower cost (30) to
the edge, and attach a higher cost (70) otherwise.

Some operators and symbols (for example ‘2’,‘�’,‘?’)
are rarely put at the first position of the script area. These
operators and symbols rarely have characters in their script
area. Therefore, we add the cost 100 to the edge if these
operators and symbols are linked with script label.

4 Admissible spanning trees

We call a spanning tree of the virtual link network satis-
fying the following 4 conditions admissible spanning tree:

1. No node of the tree has more than one children with
the same label,

2. Each node has unique candidate chosen by the edges
linked to the node,

3. For each nodeK, all the nodes in the subtrees in RSub-
Script link and RSupScript link are situated in the left
hand side of K’s Horizontal child node.

4. For each node K, all the nodes in the subtrees in LSub-
Script link and LSupScript link are situated in the right
hand side of K’s parent node.

4.1 Transformation into a search path problem

Each edge of the network is represented by the 4 compo-
nents:

(parent candidate, child candidate, label, cost)

Each node has a list of edges representing the relation with
its parent nodes. Figure 6shows the lists of the edges at-
tached to each node of the network in Figure 5. In order to
get a spanning tree of the network, we have only to select
an edge from each list of the edge candidates. Therefore, a



spanning tree of the network is represented by a path con-
necting edges selected from the list of edges of each node.
Thus these paths and the spanning trees of the network are
in one-to-one correspondence.

The problem of selecting admissible spanning trees is
thus transformed into a search path problem satisfying the
corresponding conditions.

A (c,x,Horizontal,10) C (x,y,Horizontal,10)
(C,�,RSupScript,50) (�,y,Horizontal,100)
(c,�,Horizontal,100) D (2,3,Horizontal,10)
(C,x,Horizontal,100) E (y,3,RSupScript,10)

B (x,2,RSupScript,10)
(�,2,RSupScript,50)

Figure 5. Network

Figure 6. Search for spanning trees

(In Figure 6, the edges R are the links from the root of the
tree to the candidates in the node.)

4.2 Algorithm of listing admissible spanning trees
of low costs

Given the candidate number S, we show below the al-
gorithm to search for a maximum of S admissible spanning
trees, namely “paths”, of lower costs, where the cost of a
tree is the sum of the link costs of the edges in the tree.

By limiting the number of candidates to S in each step,
in the ascending order of the cost, it is possible to prevent
the increase of the search space of the combinatorial number
order.

Preparation Let N be the number of nodes in the net-
work. Then put nodes in the ascending order of x coordi-
nate of the top left point of the bounding rectangle. Let Ki

be the i-th node (i = 1; :::; n), and each Ki has a list of
edges, [li1; :::; limi

], where each mi means the number of
edges whose children are Ki.

Algorithm
Step 1 Put a maximum of S subtrees including each edge

of KN in ascending order of the cost in N -TreeList.
Put N = i� 1.

Step 2 If i = 0, output 1-TreeList and come to an end.
Otherwise, go to Step 3.

Step 3 For all pairs of the subtree T in the i + 1-TreeList
and the edge lij in the list of Ki, check out if they
satisfy the following conditions.

� The parent and child candidates of the edge lij
are not contradictory to the candidates included
subtree T .

� There is no edge which has the same label and
the same parent node in the subtree T .

� Let P be the parent node of the edge lij . The
x coordinate of the normalized center of the P ’s
horizontal child node is located in the right hand
side of the left terminal point of the P ’s script
area1.

Step 4 Put a maximum of S subtrees satisfying the con-
ditions of Step 3 in ascending order of the cost in i-
TreeList. Put i! i� 1 then go to Step 2.

5 Reevaluation of the costs

Each tree in the list of the admissible spanning trees gen-
erated by the algorithm described in the previous section is
called a candidate tree. Each candidate tree has its own cost,
defined as the sum of the link cost of the edges initially at-
tached to the network. To each candidate tree, we add some
new costs determined by the global structure of the mathe-
matical formula which represents the candidate tree.

In the following description of the new cost, the termi-
nology “same”, “equal” or “different”, etc. must be inter-
preted as the result of robust comparison using the distribu-
tion map on Figure 4 in Section 2. The numbers between
parentheses represent the cost we use in the expremint de-
scribed in 6.

1. For each node K, if the maximum of the normalized
sizes of the characters in K’s script area is equal or
greater than K’s normalized size, add a penalty cost
(100(equal), 200(greater)) depending on the compari-
son result,

1In order to reduce the increase of useless paths, left subscripts and left
superscripts are pre-processed in advance, and ommited from the check list
in the algorithm.



2. If there are some characters in the script area which
have the same normalized size and normalized center
as in a character on the baseline, add a penalty cost
(100),

3. If some alphanumeric characters on the baseline have
different normalized sizes and centers each other, add
a penalty cost (100),

where, script area means the total sum of the superscript
area, subscript area for ordinary characters, and the sum of
the top area and bottom for the nodes corresponding to char-
acters such as ‘

P
’, ‘lim’,etc.

After adding these penalty costs to the original cost, we
output the candidate tree of the minimum cost as the final
result of the structure analysis.

6 Experiments

In this section, we report some experimental results of
our method.

6.1 Character Recognition

The character recognition engine used in the experiment
recognizes about 450 kinds of characters: alphanumeric
characters distinguishing upright and italic fonts, Greek
characters and other mathematical symbols. It is trained us-
ing 180,000 learning patterns collected from 11 Japanese
books, 30 English journals in mathematics scanned by
400dpi, and the scanned images of the prints of the fonts
of TEX, Windows and Macintosh.

Table 2 shows the averages of the recognition rates by
the experiment carried out for 74 page images chosen from
8 mathematical journals, different from the journals used
to collect learning patterns. In the experiment, the char-
acters such as “Ss”, “Cc”, “0Oo”, “1l”, etc. are grouped
into same classes, while the upright/italic fonts of the al-
phanumeric characters are distinguished. The numbers be-
tween parentheses show the total numbers of the characters
counted. Touching characters and broken characters are ex-
cluded from the count.

Alphanumeric Greek Arrow
Normal Size 99.22 (88997) 98.17 (2027) 98.54 (137)
Small Size 94.86 (2973) 96.54 (694) 99.27 (42)

Parenthesis Other
Normal Size 98.85 (5398) 98.87 (6568)
Small Size 95.36 (237) 94.47 (941)

Table 2. Recognition rates of the first candi-
date (%)

6.2 Experiments

We experimented with 123 lines of mathematical formu-
lae extracted from 12 mathematical journals. The average
number of characters in a line is 34.70.

In order to evaluate our method of structure analysis, we
tested using samples including touched characters and bro-
ken characters. We counted only the number of link errors,
namely even if the character recognition result is wrong or
“REJECT”, we counted it as “correct” if the link is correct
in the output tree.

6.2.1 Result of recognition

Total recognition
In this context, 110 lines were recognized perfectly and
there were 13 lines including some recognition errors. To-
tal result in Table 3 shows the total number of the links, the
number of the error links and the rate of the correct results.

Robustness against character recognition errors
Further, we examined the recognition results of the link
structure for the cases of the links of characters of the fol-
lowing two cases.

1. mis-extracted characters include:

� The characters touched with other characters,
� The characters broken into several pieces,
� The characters composed of several connected compo-

nents such as ‘i’, ‘j’, ‘�’, etc., which could not unified
into one character correctly.

2. undetermined characters include:

� The characters having similar characters with different
normalized sizes, such as “Ss”, “Cc”, etc.,

� The characters rejected by our character recognition
engine,

� The characters with the 1st candidate having the nor-
malized size different from the correct normalized
size.

The results of the links for the edges connecting these
characters are shown in Table 3. It shows that our method
is robust against the errors of the character recognition, and
efficient for touched or broken characters to some extent.

total error correct rate
total result 4268 36 99.16%
mis-extracted 26 6 76.92%
undetermined 597 4 99.33%

Table 3. Total results and results for difficult
cases



6.2.2 Examples

Example 1.

(5:3) k�((; z) =

n�lX
q=O

cn;�;q
l�

l� � � z
�n+��q

(1� � � z)q+1(l� jaj2)n

�
hh�

l� � � z
�
P
��1;�n

n�q�l
z � d� �

�
l� jzj2

�
P
�;�n
n�q�1� � d�

i
^ (dz � d�)q

+qP�;�n

n�q�l
z � d� ^ (dz � d�)q�l^@jzj2 ^ � � d�

i
;

In this sample, almost all characters were recognized
correctly, except for a symbol in the script areas: the link of
the operator ‘^’ in the third line was wrongly recognized.
However, the characters following this symbol ‘^’ were not
affected by the error. So far, using top-down methods, there
were many cases where the result was as follows:

+qP�;�n
n�q�lz � d� ^ (dz � d�)

q�l^@jzj2^��d�];

Example 2.

jXnj 5
�
jpjF (�� 1

p�1 )
�n

1

In this sample, ‘p’, ‘L’ and the fractional line are touched
and the result of the character recognition was ‘F ’. There-
fore, the system could not find the parent character of ‘1’.

7 Conclusion and future work

We proposed and implemented a new method of recog-
nizing mathematical formulae using virtual link network.
We output the spanning tree of the network with minimum
cost, using not only the local costs initially attached to the
network but the costs reflecting the global structure of for-
mulae. As the result, we showed that our method was robust
against the recognition errors between the characters with
different normalized sizes.

As the result of our experiment using the mathemat-
ical formulae collected from different mathematical jour-
nals and books, we can conclude that the method is robust
against the variation of the printing styles of the documents.

The method to correct errors between the characters with
same normalized sizes is left the subject of our future re-
search.

References

[1] D. Blostein and A. Grbavic, Recognition of Mathematical No-
tation, Handbook of Character Recognition and Document
Analysis, Eds. H.Buke, and P.Wang, Word Scientific, (1997).

[2] M. Okamoto and B. Miao, Recognition of mathematical ex-
pressions by using the layout structure of symbols, Proceed-
ings of First International Conference on Document Analysis
and Recognition Saint Malo, (1991), 242–250.

[3] M. Okamoto and H. Twaakyondo, Structure analysis and
recognition of mathematical expressions, Proceedings of
Third International Conference on Document Analysis and
Recognition, Wontreal, (1995), 430–437.

[4] R. J. Fateman, T. Tokuyasu, B. P. Berman and N.Mitchell,
Optical Character Recognition and Parsing of Typeset Math-
ematics, Journal of Visual Communication and Image Repre-
sentation vol.7, no.1, (1996), 2–15.


