
Detection of Matrices and Segmentation of Matrix Elements
in Scanned Images of Scientific Documents

KANAHORI Toshihiro
Research Center on Educational Media,

Tsukuba College of Technology
4-12 Kasuga, Tsukuba-shi, Ibaraki, 305-0821 Japan

kanahori@k.tsukuba-tech.ac.jp

SUZUKI Masakazu
Faculty of Mathematics, Kyushu University
Kyushu Univ. 36, Fukuoka, 812-8581 Japan

suzuki@math.kyushu-u.ac.jp

Abstract

We proposed a method for recognizing matrices which
contain abbreviation symbols, and a format for represent-
ing the structure of matrices, and reported experimental re-
sults in our paper [1]. The method consisted of 4 processes;
detection of matrices, segmentation of elements, construc-
tion of networks and analysis of the matrix structure. In
the paper, our work was described with a focus on the con-
struction of networks and the analysis of the matrix struc-
ture. However, we concluded that improvements in the other
two processes were very important for obtaining a high ac-
curacy rate for recognition. In this paper, we describe the
two improved processes, the detection of matrices and the
segmentation of elements, and we report the experimental
results.

1. Introduction

The technology of OCR is very efficient for digitizing
printed documents. However, current OCR systems can not
recognize mathematical formulae, which are very important
in scientific documents. Several algorithms for recognizing
mathematical formulae have been reported in the literature
([2]–[4]), and some of them can be applied to very sim-
ple matrices, such as gridironed matrices. In our paper [1],
we proposed a new practical method for recognizing matri-
ces containing abbreviation symbols, and proposed a format
for representing a matrix structure to output the recognition
results. We defined the domain to allow matrices to con-
tain formula elements, area symbols and repeat symbols in
the matrix coordinates (Fig. 3). The method consists of 4
processes; (1) detection of matrices in a scanned page im-
age, and extraction of characters from each area of the ma-
trices, (2) segmentation of the characters into elements for
each matrix, (3) construction of networks of the elements,

and (4) analysis of the structure of each matrix. In process
(3), we regard a matrix structure as a network of elements
connected to each other by links representing their relation-
ships, and we consider independently the horizontally and
vertically projected networks (Fig. 1). In process (4), we ob-
tain the areas of variable block pattern elements generating
the minimum rectangular area of the matrix by solving a si-
multaneous system of equations given by the two projected
networks (Fig. 2). When the segmentation of the elements
and the construction of the networks are performed without
error, the structure analysis is always completed correctly.
In our paper, we described these processes with a focus on
algorithms for constructing the networks and for solving the
simultaneous systems. In the experimental results of the
paper, we obtained some measure of accuracy of the recog-
nition rate, but it was not satisfactory. Most of the errors
resulted from the process for segmentation of the elements.

In this paper, we present details of improved algorithms
for the 2 processes (1) and (2) above, and report the experi-
mental results of these methods. The decorators, which rep-
resent detail numbers for elements, positions of elements,
etc., are excluded at present (Fig. 3).

2. Assumptions and Definitions

We assume that a matrix has at least 2 rows and it is
fenced by one of 4 couples of parentheses, (), { }, [] and | |
(determinant), and that matrix elements can be gridironed
(Fig. 2).

We classify the components of a matrix into 3 classes
(Fig. 3). The definitions are;

Formula element has only one grid as its own area, and can
connect to other elements in the 8 directions (Fig. 1).

Area symbol has several grids as its own area and a free
boundary. Common area symbols are O,0,1,∗, etc. , and a
space is also an area symbol.

Figure 1. Example of the construction and
projection of a network.

Figure 2. Example of a simultaneous system
of equations given by the two projected net-
works.

Repeat symbol means that formula elements are continu-
ously aligned on the straight line in its direction; ↓,→,↘
or ↗. It can connect to formula elements and other repeat
symbols with different directions.

For our matrix recognition from a page image, we as-
sume that its lines are distinguished, characters are recog-
nized, a coordinate of a bounding rectangle of each charac-
ter is obtained and an average of the heights of the charac-
ters is determined. We define the following symbols to give
a clear description:

Have := the average of the heights of characters,

BR(c) := a bounding rectangle of a character c,

Intx(c) := a projected interval of BR(c) to the x-axis,

Inty(c) := a projected interval of BR(c) to the y-axis,

2.1. Detection of Matrices

The matrix recognition is applied to each of the lines.
Each line is a linear sequence of characters. In a line, char-

Figure 3. Matrix components (left) and Deco-
rators (right).

acters are horizontally sorted by the x-coordinates of their
bounding rectangles, but in a mathematical formula hav-
ing a 2-dimensional structure, their order is indefinite. For
example, in a fraction, characters of the numerator and de-
nominator are mixed in a line, and their order is not defined.
The detection of matrices is processed as follows:

1. From the head to the tail of a line, big parentheses are
located and added to a list of big parentheses, where a
big parenthesis is determined by the following condi-
tions:

• Its height must be greater than Have ×1.5.

• It is one of the parentheses.

• If it is not one of the parentheses, its width must
be less than Have, considering an error of charac-
ter recognition. In this case we regard it as ‘|’ (a
vert).

2. From the tail to the head of a line, for an opening
parenthesis, a closing parenthesis is searched for which
can be a couple with the opening parenthesis, where
the conditions of a parenthesis couple are:

• The closed parenthesis is on the right side of the
opening parenthesis.

• There is no big parenthesis between them.

• There are at least 2 characters between them.

• Considering the case when one of them is broken,
an intersection of their projections to the y-axis is
more than a half of each projection.

When a couple of parentheses are found, they are both
erased from the list of parentheses. For a vert, a closing
vert is searched for amongst the verts in the list.

If some parentheses are remaining in the lists after the de-
tection process, they are treated as conditional statements.

For each of the detected parenthesis couples, characters
between them are segmented into matrix components. We
assume that the results of the character recognition are al-
ways correct in the following.

2.2. Segmentation of Matrix Elements

Following the detection of matrices, each detected ma-
trix has a set of characters in its own area. It is necessary to
segment them into formulae elements or area symbols.

We let C = {c1, · · · ,cn} be a set of the characters, except
for dots, in the matrix. For two characters c and d ∈ C, we
define an interval Btwx(c,d) = [s, t] by

Intx(c)∩ Intx(d) 6= /0 ⇒

{

s = min(tc, td)

t = max(sc,sd)
,

Intx(c)∩ Intx(d) = /0 ⇒ Btwx(c,d) := /0,

where we let [sc, tc] = Intx(c) and [sd , td] = Intx(d). For a
character c ∈C, we define a set of characters, NBx(c), by

NBx(c) :=

d ∈C

Btw(c,d) 6= /0, and

Intx(b) 6⊂ Btwx(c,d)

for any b ∈C

.

We also define Btwy(c,d) and NBy(c) in the same manner
as above. For c ∈ C, except for a ‘−’ (a minus), we obtain
a scope of c, SC(c), by inflating BR(c) by αxSx(c) on both
the left and right hand sides and by αySy(c) in both the up-
per and lower regions. If BR(d), for d ∈C, and SC(c) have
an intersection, the characters d and c are segmented into
the same element (Fig. 4). The value Sx(c) is obtained by an
average of the two shortest lengths among a set of lengths of
intervals, { |Btwx(c,d)| d ∈ NBx(c)}. If |NBx(c,d)| < 2,
a temporary value 1

2 Have is used instead of the lengths. The
value Sy(c) is obtained in a way similar to Sx(c). These
values denote the distances between c and other characters
which are immediately adjacent to c (there is no character
between them). If Sx(c) (or Sy(c)) is larger than Have, we
assume that there is no character adjacent to c, so we set
Sx(c) = 0 (resp. Sy(c) = 0).

The coefficients, αx and αy, also depend on c. We set the
coefficient αx as

αx(c) :=

4 c is a big symbol (∑, ∏, etc.),

3 c is a binary operator,

1.5 c is long and thin alphanumeric,

0.1 c is short and wide alphanumeric,

1 otherwise,

where we let c be long and thin when the height of BR(c)
is greater than two times its width, and let c be short and
wide when the width of BR(c) is greater than one and a
half times its height, and αy as

αy(c) :=

1.2 c is a big symbol (∑, ∏, etc.),

0.3 c is a binary operator,

1.6 c is a fractional line,

0.3 otherwise,

where we let c be a fractional line when c is recognized as
a fractional line by the character recognition, or when c is
recognized as a minus yet there are some characters within
a distance of a half of Have to the upper and lower regions of
c. These values are determined in practice. The values for
αx are set larger than those for αy so that the horizontal con-
nections are tighter than the vertical ones. Almost always a
binary operator has characters on both of its sides and often
there is some space between them, so αx for binary opera-
tors is set larger than for other symbols. A big symbol often
includes an upper or a lower limit formula, and is separated
from it by only a very small distance, so αx for big sym-
bols is set to be large to prevent a big symbol which does
not have an upper or lower limit formula from incorrectly
including other elements as part of a formula of this type. A
fractional line always has a numerator and a denominator,
so αx for fractional lines is set to be larger than for other
symbols.

The character ‘−’ (minus) is used as a binary operator or
a sign. It is necessary to determine whether or not it is being
used as a sign. When it is a sign, the space on its left hand
side is larger than that on its right hand side. Therefore, for
c = ‘−’, we use a different definition of SC(c). We obtain
SC(c) by inflating BR(c) by Sx(c)+β on both the left and
right hand sides and by αySy(c) in both the upper and lower
regions (Fig. 5). The values Sy(c) and αy(c) are obtained in
a similar way as for other characters. The value Sx(c) is the
distance on the x-axis between c and the nearest character
to c among R(c), where

R(c) :=

{

d ∈C
d is on the right side of c and

Inty(c)∩ Inty(d) 6= /0

}

.

If R(c) = /0, we set Sx(c) = 0. The constant β is included to
allow for some fluctuation, and is set at 4 pixels per 600 dpi
(scanned resolution).

In the above process, dots are not considered as com-
ponents of a matrix element. However, they are very of-
ten contained in a matrix element, and it is necessary to
segment dots into elements if they are contained. We let
D = {d1, · · · ,dm} be the set of dots in the matrix and let
E = {e1, · · · ,el} be the set of segmented matrix elements.
For a dot d ∈D and an element e∈E, if BR(d)∩BR(e) 6= /0,
where BR(e) is the smallest rectangle containing all bound-
ing rectangles of the characters in e, then d is segmented
into e. If d is not segmented into any elements, we obtain
the scope of d, SC(d), by inflating BR(d) by two times the
width of BR(d) on both the left and right hand sides (Fig. 6).
If there is an element whose bounding rectangle and SC(d)
are intersecting, then d is segmented into the element.

There is some space on the left and the right hand side of
a function name, for example, sin, cos, max, and so on. A
matrix element is often divided at the spaces (Fig. 6). There-
fore, if there is a function name on the head (or the tail) of

Figure 4. Example of a scope of a character.
On the right side, ‘C’ and ‘D’ are segmented
into the same element.

Figure 5. Example of a scope of a character
‘−’ (a minus).

an element e, we obtain the scope of e, SC(e), by inflating
BR(e) by a half of Have on both the left and right hand sides,
and search for other elements whose bounding rectangles
intersect with SC(e), and combine e with these elements.

3. Experimental Results

In order to evaluate our new methods, we implemented
them as part of our original OCR system ([4]). In our
method, when the segmentation of the matrix elements and
the construction of the networks are performed without er-
ror, the structure analysis is always exactly correct. There-
fore, we evaluated the detection of the matrices, the seg-
mentation of the elements and the construction of the net-
works using the system. We used two English and two
Japanese mathematics textbooks which included many ma-
trices, mainly used to evaluate parameters, and two math-
ematical journals. We counted the numbers of errors with
respect to the 3 parts. We show the experimental results in

Figure 6. Examples of a scope of a dot (left)
and a wrong segmentation of an element by
spaces on the both sides of function names
(right).

Data Text Journal Total

Total matrices 375 48 423

Detection errors
16 2 18

of matrices
Success rates (%) 95.7 95.8 95.7

Segmentation errors
12 6 18

of elements (A)
Number of all characters

5364 597 5961
of matrices

Success rates (%) 99.8 99.0 99.7

Segmentation errors
5 4 9

of elements (B)
Success rates (%) 98.6 91.3 97.8

Construction errors
6 4 10

of networks
Success rates (%) 98.3 91.3 97.5

Total recognition errors
7 4 11

of matrices
Total success rates

98.1 91.7 97.4
of matrices (%)

Table 1. Experimental results of the segmen-
tation of elements, the construction of net-
works and the recognition of matrices.

Table 1.
In Table 1, the data “Detection errors” denotes the num-

ber of matrices which were not detected. The data “Seg-
mentation errors (A)” denotes the number of characters
which were segmented into the wrong elements. There
are several ways in which these errors can be counted.
For example, assume two elements ‘0’ and ‘−5’ are mis-
segmented into the same element ‘0−5’. Considering that
the ‘0’ is mis-segmented into the ‘-5’, the number of er-
rors may be counted as 1, as that is the number of char-
acters in the ‘0’, however if we consider that the ‘-5’ is
mis-segmented into the ‘0’, then the number of errors may
be counted as 2, as that is the number of characters in the
‘−5’. In this experiment, we recorded the minimum num-
ber among all the numbers which could be considered, be-
cause they are regarded as costs to correct the segmentation
errors. The success rate of (A) is the rate of properly seg-
mented characters for all the characters of the detected ma-
trices. The data “Segmentation errors (B)” denotes the num-
ber of detected matrices which have some mis-segmented
elements. Its success rate is the rate of properly segmented
matrices for all detected matrices. The data “Construction
errors” denotes the number of matrices which have some
mis-connected elements. The data “Total success rates” de-
notes the number of matrices which are detected and whose

Figure 7. Examples of success of the segmen-
tation.

Figure 8. Examples of fails of the segmenta-
tion.

elements are properly segmented and connected in relation
to the total number of matrices.

Table 1 shows that the segmentation of elements has im-
proved (the success rate in [1] was 75.3%). In Fig. 7, ex-
amples of success of the segmentation for complicated ma-
trices are shown. However, several problems were found.
The misdetection is mainly caused by errors in the recogni-
tion of parentheses due to poor conditions of the prints, and
caused by a few very small matrices, which we did not con-
sider. The parameters for our segmentation of elements are
determined in practice. In particular, the segmentation rate
of ‘−’ (a minus) depends heavily on the documents. At the
left side matrix in Fig. 8, the fractional lines are very short
and there are large spaces between their numerators and de-
nominators, moreover the left space of the minus is much
longer than the right one, and at the right side one, the ele-
ment ‘a1m’ is too close to ‘a2m’. These matrices can not be
properly segmented at present. There were often errors in
the connection of elements in simple matrices where repeat
symbols were not used, because the lengths and directions
of the repeat symbols are used to connect the elements. For
simple matrices, it is probably most effective for our method
to be combined with other methods.

4. Conclusion

We proposed a practical method for recognizing matrices
containing abbreviation symbols in the paper [1]. In the pa-
per, we defined the domain to allow the matrices to contain

formula elements, area symbols, and repeat symbols in the
matrix coordinates. The method consists of 4 parts; detec-
tion of matrices, segmentation of elements, construction of
networks and analysis of the matrix structure. We reported
this work with a focus on the algorithms for constructing
the networks and for solving the simultaneous systems. We
obtained some measure of accuracy of the recognition rate
in the experimental results of the paper, but it was not very
satisfactory. We found that most of the errors were caused
in the segmentation of elements.

In this paper, we described in detail the detection of the
matrices and an improved method for segmentation of the
elements, and reported the experimental results. In the de-
tection of matrices, we locate big parentheses using the av-
erage height of characters and search for parenthesis cou-
ples, and the experimental results indicate a very high accu-
racy. To segment characters in a matrix into elements, we
use the scope of a character, which is obtained by distances
between adjacent characters, and some parameters with re-
spect to their features in the mathematical structure. The
experimental results showed an enormous improvement in
the segmentation of elements. However, the parameters are
determined in practice, so the success of the segmentation
of elements depends on the documents that are used.

For further improvement, we should determine the pa-
rameters statistically, using data from matrices recognized
by this method, and for simple matrices should try to com-
bine our method with other independent recognition meth-
ods. Moreover, we also need to be able to recognize the
decorators of matrices which we excluded in this paper.

References

[1] T. Kanahori and M. Suzuki, A Recognition Method of
Matrices by Using Variable Block Pattern Elements
Generating Rectangular Area, Graphic Recognition,
Lecture Notes in Computer Science 2390, Springer,
2002, pp. 320–329.

[2] D. Blostein and A. Grbavic, Recognition of Mathe-
matical Notation, Handbook of Character Recognition
and Document Analysis, Eds. H. Buke, and P. Wang,
Word Scientific, 1997.

[3] M. Okamoto and H. Twaakyondo, Structure analy-
sis and recognition of mathematical expressions, Pro-
ceedings of Third International Conference on Docu-
ment Analysis and Recognition, Wontreal, 1995, pp.
430-437.

[4] Y. Eto, M. Sasai and M. Suzuki, Mathematical for-
mula recognition using virtual link network, ICDAR
2001.

