
Extraction of Logical Structure
from Articles in Mathematics ?

Koji Nakagawa1, Akihiro Nomura2, and Masakazu Suzuki1

1 Faculty of Mathematics, Kyushu University,
Kyushu Univ. 36, Fukuoka, 812-8581 Japan
{nakagawa,suzuki}@math.kyushu-u.ac.jp,

2 Graduate School of Mathematics, Kyushu University

Abstract. We propose a mathematical knowledge browser which helps
people to read mathematical documents. By the browser printed math-
ematical documents can be scanned and recognized by OCR (Optical
Character Recognition). Then the meta-information (e.g. title, author)
and the logical structure (e.g. section, theorem) of the documents are
automatically extracted.
The purpose of this paper is to show the extraction method of logical
structure specialized for mathematical documents. We implemented this
method in INFTY which is an integrated OCR system for mathemati-
cal documents. In order to show the feasibility of the method we made
a correct database from an existing mathematical OCR database, and
made an experiment.

1 Introduction

Computers became indispensable devices for mathematics. This phenomenon
can be seen by the success of mathematical systems (e.g. Mathematica or Maple)
which have been being used for various other fields: physics, economics etc.

In order to apply mathematics to the real world, mathematical knowledge
should be stored in computers in a way that people can easily use. Even if more
and more mathematics is done in formal ways, most of mathematical knowledge
is still stored in papers or books. Therefore digitizing mathematical text is still
important.

1.1 Levels of Digitization

There are several kinds of mathematics digitization. In the paper [1], Adams gave
some classifications of digitization of mathematics. Based on this consideration,
in this paper we introduce five levels of mathematics digitization.

– level 1: bitmap images of printed materials (e.g. GIF, TIFF),
? This work is (partially) supported by Kyushu University 21st Century COE Pro-

gram, Development of Dynamic Mathematics with High Functionality, of the Min-
istry of Education, Culture, Sports, Science and Technology of Japan.



2

– level 2: searchable digitized document (e.g. PS, PDF),
– level 3: logically structured document with links (e.g. HTML, MathML,

LATEX),
– level 4: partially executable document (e.g. Mathematica, Maple),
– level 5: formally presented document. (e.g. Mizar[6], OMDoc[4])

Currently most of mathematical knowledge is stored and used mainly in
printed materials (level 1) like books or journals. For being used actively it is
preferable that mathematical text is stored in a possibly higher level of digitiza-
tion. However since making documents digitized to a higher level needs quite a
lot of efforts, digitization of mathematical knowledge has not been enhanced so
far. Therefore we definitely need software in order to automatize the digitization
process in a possibly higher level.

1.2 Technologies for Automatization

The automatization can be achieved step by step:

– level 1 to level 2: OCR (Optical Character Recognition),
In order to retrieve searchable digitized document from bitmap images, OCR
is used. With OCR, character sequences can be recognized from bitmap im-
ages and then they can be used for searching words. Especially recognition of
mathematical formulae is the most important in recognizing mathematical
documents. The mathematical formulae recognition has been well investi-
gated[8].

– level 2 to level 3: Extracting Logical Structure and Hyper Links,
Obtained data after OCR are basically characters having positions in a page
structured by lines and areas. They do not directly contain meta-information
(e.g. author, title) of a paper and structural information (e.g. section, sub-
section, itemize). Also they do not have hyper links which point to internal
and external documents.

– level 3 to level 4: Semantics Recognition from Presentation,
Sometimes executable blocks (e.g. mathematical expressions, algorithms) ap-
pear in mathematical text. In level 3 mathematical expressions are described
in the two-dimensional (presentational) way. We need to extract semantic
expressions from these presentational expressions. Mathematica[10] has stan-
dard collections of these transformation rules which retrieve semantics of pre-
sentational expressions and one can even define their own style of notation
(See MakeExpression function in [10]).

– level 4 to level 5: Understanding Mathematical Document,
Usually mathematical statements like definitions, lemmata, theorems, proofs
are written in natural languages in books or papers. Therefore for treating
them in computers we need natural language processing. The first step of the
natural language processing is parsing. For parsing it is common to make a
corpus which is a set of grammar rules extracted from used expressions. Mak-
ing a corpus for mathematical statements was done by Baba and Suzuki[2].



3

After parsing, formalizing written mathematical description to logical for-
mulae in a predicate logic can be achieved. Formalized statements can be
used for proving in computers by theorem provers like Theorema[3].

Since current our mathematical activities range over all digital levels, we need
software which covers all aspects of these technologies from scanning to proving
in a coherent manner. The ultimate goal is that scanned mathematical papers
are processed and the software system gives us whether the proofs are correct,
though this goal is very ambitious.

In Section 2 since the ultimate goal is quite ambitious, as a sub-goal we pro-
pose a mathematical knowledge browser which covers from level 1 to level 3.
In order to make such a browser, some technologies are necessary. One of the
technologies is to extract logical structure from documents after OCR. In Sec-
tion 3 we discuss the method of extracting logical structure from mathematical
documents. In order to show the feasibility of the method, we made a correct
database which can represent logical structure information based on an existing
mathematical database for OCR, and experimented for the correct database. In
Section 4, the correct database is described and the result of the experiment will
be shown. Then we conclude the discussion in Section 5.

2 Mathematical Knowledge Browser

The mathematical knowledge browser helps people to do mathematics from level
1 to level 3. One of inputs for this mathematical knowledge browser is a printed
mathematical document. A printed document can be scanned, and then pro-
cessed by OCR. After OCR logical structure and hyper links are automatically
extracted and shown to users.

We will implement this mathematical knowledge browser on an integrated
OCR system for mathematical documents called INFTY[8] (INFTY can be
downloaded3). INFTY reads scanned page images of a mathematical document
and provides their character recognition results. One of the distinguished char-
acteristics of INFTY is that it can recognize two-dimensional mathematical ex-
pressions. INFTY has a graphical user interface which can show mathematical
expressions in the ordinary two-dimensional mathematical notation, and has a
manual error correction interface. The recognition results can be saved in various
formats, e.g. XML (called KML), HTML, LATEX, Mathematica, and braille.

2.1 User Interface

The browser consists of three panes: structure pane, reference pane, browsing
pane (Fig. 1). In the structure pane located in the left side, structural information
is shown as a tree like a file manager. The browser pane on the right bottom and
the reference pane on the right top show mathematical text. By clicking a link
in the browser pane, the text pointed by the link will be shown in the reference
3 http://infty.math.kyushu-u.ac.jp/index-e.html



4

Fig. 1. Screen Image of Mathematical Knowledge Browser (Sketch)

pane so that people won’t lose the attention in the browser pane. For example,
by clicking a link ‘Lemma 2.1’ the reference pane shows ‘Lemma 2.1’ while the
browser pane does not change.

2.2 Showing Relationship of Mathematical Theory Structure

Usually in a mathematical paper, mathematical components (e.g definitions,
lemmata, theorems) have dependencies and one can construct a graph which
shows the dependencies. With the mathematical knowledge browser one can see
such dependency graphs. Fig. 2 shows an example of such a graph. For example,
suppose ’Lemma 3.1’ is used in the proof of ’Theorem 4.2’, the text ’Lemma 3.1’
should appear in the proof of ’Theorem 4.2’. From this fact we can detect the
dependency automatically. By this functionality, readers can recognize theory
structure of a paper before reading into details.

Theorem 4.2
Lemma 3.1

Lemma 2.1
Lemma 2.2

Lemma 3.2

Fig. 2. Graph of Theory Dependency



5

Of course, showing theory structure is not a new idea. However the important
point is that the theory structure can be automatically extracted from printed
mathematical documents.

3 Extracting Meta-Information and Logical Structure

For realizing the mathematical knowledge browser, we need several technologies.
One of the technologies is to extract meta-information and logical structure
from mathematical documents. In this section, we discuss the method to extract
automatically meta-information and logical structure.

There are several studies of logical structure extraction from documents.
Extensive surveys can be found in papers[5, 7]. In these studies target documents
vary from general documents to specific documents. The work presented in this
paper is unique because it is specialized for mathematical documents and it
extracts mathematical specific components (e.g. Theorem, Proposition). The
method proposed in this paper does not need to know layout styles beforehand,
while some other studies do.

3.1 Data Representation for Meta-Information and Logical
Structure

INFTY[8] produces the following nested structure as output from scanned images
as input.

– 1st page (size and position in the page)
• 1st area (size and position in the page)

∗ 1st line (size and position in the page)
· 1st character (code, size and position in the page)
· 2nd character (code, size and position in the page)
· ...

∗ 2nd line
∗ ...

• 2nd area
∗ 1st line

· 1st character
· ...

∗ ...
– 2nd page
– ...

A document contains several pages and each page contains several areas which
have positions and sizes in the page. An area can contain lines which also have
their positions and sizes. A line has recognized characters with positions, sizes
and font styles.

INFTY produces the output in a XML format called KML. We extended the
KML format so that it can represent meta-information and logical structure. For



6

example, Fig. 3 shows a result output in the extended KML for a scanned image
shown in Fig.4. The top element is ‘Doc’ which contains some ‘Sheet’ elements
representing pages. ‘Sheet’ elements contain some ‘Area’ elements whose posi-
tions and sizes are indicated by ‘rect’ attributes. The value of the ‘rect’ attribute
"left,up,right,down" indicates the positions of left, up, right, down borders of
the rectangle. An ‘Area’ element contains a ‘Text’ element having a ‘Field’ el-
ement. A ‘Field’ element has several ‘Line’ elements which have again several
‘Char’ elements.

For the need of putting additional information for meta-information and
logical structure we added the ‘tag’ attribute for the ‘Text’ element in order
to represent the type of the text field. The values of the ‘tag’ attribute are
‘PageHeader’, ‘PageNumber’, ‘Caption’, ‘Title’, ‘AuthorInfo’, ‘AbstractHeader’,
‘Abstract’, ‘Keywords’, ‘Heading1’, ‘Heading2’, ‘Heading3’, ‘Heading4’, ‘Head-
ing5’, ‘Text’, ‘ReferenceItem’, ‘Definition’, ‘Axiom’, ‘Theorem’, ‘MainTheorem’,
‘Proposition’, ‘Corollary’, ‘Lemma’, and ‘Footnote’.

3.2 Extraction Algorithm

The algorithm of extracting logical structure works in two steps: segmenting
areas in a page and putting appropriate tags to the areas. In Fig. 4, areas are
indicated by gray rectangles and their tags are put beside the rectangles. An
area can be either a special text area (page number, running header, captions
of tables and figures, footnotes, and headings) or a normal text area which
can be a mathematical component (e.g. theorem, definition). Later the method
to extract mathematical components is described in details. After the correct
process of putting tags, the conversion to a logically structured format (e.g.
HTML, OMDoc) is straightforward.

Segmentation Segmentations can be done in the following three ways:

– Segmentation by Spacing
By using spacing information, scanned images are separated into several
areas which can be either text area, figure/table area, or formulae area.

– Segmentation by Style Difference
For each text area, the average size of the characters contained in the area
is calculated. The size of a character can be determined by the height of
the character. Also boldness can be calculated by the horizontal widths of
characters. In an area when the styles (bold, italic, and size) of lines are
obviously different from those of other lines, they are separately segmented.

– Segmentation by Keywords
In an area, when a special keyword of mathematical components (e.g. The-
orem, Lemma, Definition) comes in the beginning of a line, basically they
are segmented. However sometimes there are cases that keywords do not in-
dicate beginnings of mathematical components. This issue will be discussed
in the next subsection.



7

<Doc version="1.1" language="English" ...>

<Sheet id="1" doc_file_name="Arkiv_1997.kml"

image_file_name="Arkiv_1997_185.tif" height="4438" width="3015" ...>

<Area rect="148,129,1801,266" id="1" ...>

<Text rect="148,129,1801,266" tag="PageHeader" ...>

<Field base_char_size="16,30,13,41" sub_char_size="11,20,9,28">

<Line id="1" rect="148,129,1086,195">

<Char code="0141" rect="148,133,195,180" ...>A</Char>

<Char code="0172" rect="200,151,223,180" ...>r</Char>

...

</Line>

<Line id="2" rect="149,200,1801,266">

...

</Area>

<Area rect="279,948,3022,1239" id="2" ...>

<Text rect="279,948,3022,1239" tag="Title" ...>

...

</Area>

...

</Sheet>

<Sheet id="2" doc_file_name="Arkiv_1997.kml"

image_file_name="Arkiv_1997_186.tif" height="4432" width="3002" ...>

<Area rect="229,169,326,215" id="1">

<Text rect="229,169,326,215" tag="PageNumber" ...>

<Field base_char_size="16,28,12,39" sub_char_size="11,19,8,26">

<Line id="1" rect="229,169,326,215">

...

</Text>

</Area>

<Area rect="1088,168,2358,228" id="2">

<Text rect="1088,168,2358,228" tag="PageHeader" ...>

<Field base_char_size="16,29,12,40" sub_char_size="11,20,8,27">

<Line id="1" rect="1088,168,2358,228">

...

</Area>

<Area rect="231,405,3224,701">

<Text tag="Theorem">

<Field>

<Line id="1" rect="392,405,3224,486">

<Char code="2154" rect="392,410,452,467" bold="1"...>T</Char>

<Char code="2168" rect="458,409,506,467" bold="1"...>h</Char>

...

</Area>

<CharInfo>... </CharInfo>

</Doc>

Fig. 3. Example of KML Output from INFTY OCR Engine



8

Fig. 4. Example of Scanned Image Separated by Areas



9

Putting Tags to Areas After the segmentation process, appropriate tags are
put to these segmented areas. Here we describe criteria to decide appropriate
tags for areas.

– Title and Headings (e.g. section, subsection)
In order to put tags to these area, areas are ordered by the following lexico-
graphic ordering through a document.

〈Size, AllCapital, HCapital, Bold, Italic〉

Size: average size of characters contained in the area
AllCapital: true if all characters are written in capital (e.g. SYSTEM)
HCapital: true if only head characters are written in capital (e.g. System)
Bold: true if characters are written in bold
Italic: true if characters are written in italic

The ‘Title’ tag is put to areas appeared in the upper part of the first page
and is written in the largest area in the paper according to the lexicographic
order above. Headings usually start from either some numbers separated by
periods or special keywords like ‘Introduction’, ‘References’, ‘Bibliography’
in an emphasized (large/bold/italic) font. The tags ‘Heading1’,‘Heading2’,
· · · are put to the second, third, · · · largest area in the lexicographic order.

– Author Information
The tag ‘AuthorInfo’ is put to areas which come next to the title before
‘Heading1’.

– Page Header, Footnote, and Page Number
The ‘PageHeader’(‘Footnote’) tag is put to areas positioned in the top (bot-
tom) of the page and written in smaller fonts than the average font size of
the text areas in a paper. The ‘PageNumber’ tag is put to the areas which
appear on the bottom or upper right or upper left of a page, and consist of
numbers in Arabic style or in Roman style (e.g. i, ii, iii, and iv).

– Mathematical Components (e.g. definition, lemma, theorem)
The tags for mathematical components are put to areas which start from the
special keywords like ‘Theorem’, ‘Definition’, etc. Here the problem is that
these special keywords do not always indicate beginnings of mathematical
components. The problem will be discussed in the next subsection.

3.3 Two Difficulties in Extraction of Mathematical Components

Correct extraction of mathematical components are important for further pro-
cessing of mathematical documents, e.g. indexing, construction of dependency
graphs, and understanding of mathematical statements. Here we describe two
difficulties for extracting mathematical components.



10

Fig. 5. Looking for Beginnings of Mathematical Components

Looking for Beginnings of Mathematical Components Basic idea of de-
tecting beginnings of mathematical components is to look for special keywords
(e.g. Theorem, Lemma, and Definition). However these special keywords do not
always indicate beginnings of mathematical components.

For example in Fig. 5, the 6th line starts with the keyword ‘Proposition’,
but it is not the beginning of a proposition declaration. It appears in text in
order to refer the ‘Proposition 3.4’ defined above. In Fig. 5 proposition com-
ponents start from the keyword with all capital characters ‘Proposition’ which
distinguish from other keywords like ‘Proposition’. However we can not assume
that keywords of beginnings are written in all capital characters, because there
are many other papers which have different styles. Therefore we need a general
algorithm in order to detect styles of mathematical components. In Section 3.4
the method will be described in details.

Looking for Endings of Mathematical Components Looking for the end-
ings of the mathematical components is not so easy task. For example, in Fig.
6, the fifth line is the ending of the lemma. In this case, the lemma is writ-
ten in italic till the fifth line and from the sixth line it turns into normal font.
Therefore the ending of the lemma can be detected. It is usual that lemmata
or theorems are written in italic. However definitions usually are not written in
italic. Another criterion can be indentation or space between lines. In this paper,
we simply look for the style change from italic to normal font for mathematical
components except definitions, and for definitions we look for indentation.

When a mathematical component spreads over more than one page, failure
detection of ‘PageHeader’, ‘Footnote’, ‘PageNumber’ causes failure of looking for
the ending of the mathematical component. Therefore the detection of ‘Page-
Header’, ‘Footnote’, ‘PageNumber’ is very important.



11

Fig. 6. Looking for Endings of Mathematical Components

Line Feature Explanation

BK-Definition The line begins from the keyword ‘Definition’.
BK-Theorem The line begins from the keyword ‘Theorem’.
BK-Proposition The line begins from the keyword ‘Proposition’.
BK-Corollary The line begins from the keyword ‘Corollary’.
BK-Lemma The line begins from the keyword ‘Lemma’.
K-Italic The keyword is written in italic.
K-Bold The keyword is written in bold.
K-LCapital All characters of the keyword are in large capital. (e.g PROPOSITION)
K-SCapital Most of characters of the keyword are in small capital. (e.g. Proposition)
Indented The line is indented.

Table 1. Line Features

3.4 Algorithm for Detecting Styles of Mathematical Components

In a paper, for a mathematical component the formatting style is uniform in
principle. The idea of the algorithm for detecting styles of mathematical com-
ponents is to use the style uniformity of a mathematical component.

The algorithm for detecting styles of mathematical components is described
in Fig. 7. At first features shown in Table 1 are extracted from lines, and then
for each line two style values ‘lineDefStyle’ and ‘lineCompStyle’ are caluculated.
The variable ‘lineDefStyle[i]’ stores the style value of the ith-line and is for
detecting the beginning of a definition mathematical component. The variable
‘lineCompStyle[i]’ is for detecting other mathematical components, since most of
the cases the style of mathematical components except definitions is the same.
If the line does not start from a special keyword of mathematical components,
the style value becomes ‘-1’ which means that it can not be the beginning of a
mathematical component. Then the most frequent style values in a paper decide
the styles of the beginning line of a mathematical component and the style values
are assigned to the variables ‘defStyle’ and ‘compStyle’ which are the styles of
mathematical components used in this paper. Finally when the style value of
a line is not ‘−1’ and it coincides with the most frequent value, the line is the



12

// calculating the style value for each line

for i=1 to line_length(paper) {

lf=extract_features(paper.line[i]) // extracting line features

// The number ‘-1’ means that the line can not be

// the beginning of a mathematical component.

lineDefStyle[i]= if(lf.BK-Definition, stylefunc(lf), -1);

lineCompStyle[i]=if(lf.BK-Theorem || lf.BK-Proposition ||

lf.BK-Corollary || lf.BK-Lemma, stylefunc(lf), -1);

}

// detecting most frequent style values

defStyle =most_frequent(lineDefStyle);

compStyle=most_frequent(lineCompStyle);

// looking for endings

for i=1 to line_length(paper){

if(!(compStyle==-1)&& lineCompStyle[i]==compStyle) {

segmentArea();

look_for_ending_by_Italic(i);}

if(!(defStyle==-1) && lineDefStyle[i]==defStyle) {

segmentArea();

look_for_ending_by_Indent(i);}

...

};

int styleFunc(LineFeatures lf)

{ return (lf.K-Italic*2^0+lf.K-Bold*2^1+lf.K-LCapital*2^2+lf.K-SCapital*2^3

+lf.Indented*2^4); }

...

}

Fig. 7. Algorithm for Detecting Styles of Mathematical Components

beginning of a mathematical component and the process of looking for the ending
is executed.

4 Experiment

In order to see the effectiveness of the algorithm we made an experiment for a
database.

4.1 Outline of Database

We added new information of logical structure to a large-scale database of math-
ematical documents[9, 8] and made the correct database which can be used for
the experiment. The documents contained in the database are 30 English arti-
cles on pure mathematics (issued in 1970 - 2000). Basically for each journal two
old and new papers are selected. The numbers of pages and characters in the
database are 422 and 706,279, respectively. This database is larger than other
database used in the past researchers on math-OCR.



13

TagName Correct Success Begin-
AreaErr

End-
AreaErr

TagErr Miss-
Recog.

Rate1
(%)

Rate2
(%)

PageHeader 467 447 0 11 9 0 95.7 95.7
PageNumber 439 418 0 11 10 0 95.2 95.2
Title 30 23 0 2 5 0 76.7 76.7
AuthorInfo 30 22 2 4 2 0 73.3 73.3
Abstract 5 0 0 2 3 1 0 20
Heading1 141 93 0 10 38 3 66 68.1
Heading2 25 8 4 6 7 0 32 32
Footnote 20 10 5 3 2 0 50 50

Definition 42 10 23 7 2 27 23.8 88.1
Theorem 130 99 17 12 2 20 76.2 91.5
Main Theorem 2 2 0 0 0 0 100 100
Proposition 96 73 10 11 2 14 76 90.6
Corollary 37 30 5 1 1 7 81.1 100
Lemma 116 89 11 16 0 18 76.7 92.2

Total 1580 1324 77 96 83 90 83.8 89.5

‘Correct’ number of areas in the correct database.
‘Success’ number of success tagging by the method proposed in this paper.
‘Begin-AreaErr’ number of errors to detect beginnings of areas.
‘End-AreaErr’ number of cases which detected beginnings of areas,

but failed to detect endings of areas.
‘TagErr’ number of errors that different tags were put.
‘Miss-Recog.’ number of miss-recognitions by OCR for the special keywords.
‘Rate1’ success rate computed by Success/Correct ∗ 100.
‘Rate2’ success rate computed by (Success + Miss-Recog)/Correct ∗ 100.

Table 2. Experimental Result

All pages were scanned in 600 dpi and binarised automatically by the same
commercial scanner (RICOH imagio Neo 450). The quality of resulting page im-
ages are noisy and include a lot of abnormal characters, such as touching char-
acters and broken characters. The maximum and minimum abnormal character
rates, which represent the quality of images, are 12.6% and 0.11%, respectively.

4.2 Experimental Result

We implemented the algorithm within the INFTY system and compared with
the correct database described above. The result is summarized in the Table 2. If
there are miss-recognition of characters, the keywords used for detection are not
effective for extracting structure. Therefore it is considered that ‘Success’+‘Miss-
Recog.’ approximates the real success numbers for the method described in this
paper.

(CONSIDERATIONS!!!) Increasing correct database Test for many papers!!!



14

5 Conclusion

A method of extracting meta-information and logical structure from mathemati-
cal documents was presented and implemented on the base of the INFTY system.
In order to show the feasibility of the method, we made an experiment and got
the result of ??% recognition rate.

The improvement of the recognition accuracy can be achieved by giving ad-
ditional information to the system. For example, knowing journal names, which
may be automatically extracted from running headers, can contribute to the ac-
curacy, because a journal has its own format. Also when the system fails to detect
logical structure, a little human interaction can contribute to the accuracy.

With the facility of automatic linking, we will be able to implement the math-
ematical knowledge browser based on the INFTY system. The mathematical
knowledge browser can be extended to a system for editing mathematical doc-
uments. With the editor one can input mathematical statements in formalized
formulae. The formalized formulae can be sent to computing, solving, proving
services located in the Internet and retrieve the results. Namely it can be used as
a front-end for mathematical services. We expect this mathematical knowledge
browser to become a digitalization tool for mathematics, and enhance mathe-
matical activities.

References

1. A. A. Adams. Digitisation, Representation and Formalisation: Digital Libraries of
Mathematics. In Mathematical Knowledge Management (MKM 2003), Feb. 16th -
18th, 2003, Bertinoro - Italy, LNCS 2594. Springer, 2003.

2. Y. Baba and M. Suzuki. An Annotated Corpus and a Grammar Model of Theorem
Description. In Andrea Asperti, Bruno Buchberger, and James Harold Davenport,
editors, Second International Conference, MKM 2003, Bertinoro, Italy, pages 93–
104, Feb. 2003.

3. B. Buchberger, C. Dupre, T. Jebelean, F. Kriftner, K. Nakagawa, D. Vasaru, and
W. Windsteiger. The Theorema Project: A Progress Report. In Symbolic Compu-
tation and Automated Reasoning, pages 98–113. A.K. Peters, 2001.

4. M. Kohlhase. OMDoc: An Infrastructure for OpenMath Content Dictionary Infor-
mation. SIGSAM Bulletin (ACM Special Interest Group on Symbolic and Algebraic
Manipulation), 34(2):43–48, 2000.

5. S. Mao, A. Rosenfeld, and T. Kanungo. Document Structure Analysis Algorithms:
A Literature Survey. In Document Recognition and Retrieval X, number 5010 in
Proceedings of SPIE, pages 197–207, January 2003.

6. P. Rudnicki. An Overview of the Mizar Project. In Proceedings of the 1992 Work-
shop on Types for Proofs and Programs, Chalmers University of Technology, Bas-
tad, 1992. http://mizar.org.

7. K. M. Summers. Automatic Discovery of Logical Document Structure. PhD thesis,
Cornell University, 1998.

8. M. Suzuki, F. Tamari, R. Fukuda, S. Uchida, and T. Kanahori. INFTY — An
Integrated OCR System for Mathematical Documents. In ACM Symposium on
Document Engineering (DocEng ’03), Grenoble, France, Nov. 20-22, 2003.



15

9. S. Uchida, A. Nomura, and M. Suzuki. Quantitative Analysis of Mathematical
Documents. Submitted to a journal.

10. S. Wolfram. The Mathematica Book, Fifth Edition. Wolfram Media, Inc., 2003.


